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APPENDIX A: SCALE-MODEL 6-INCH-
DIAMETER HOUSINGS
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All appendix A figures and tables are placed at the end of appendix A text.

FIGURES

A-1.
A-2.
A-3.
A-4,
A-5.
A-6.
A-7.
A-8.
A-9.

A-10.
A-11.
A-12.
A-13.
A-14,
A-15.
A-16.
A-17.
A-18.
A-19.
A-20.
A-21.
A-22.
A-23.
A-24.
A-25.
A-26.
A-27.
A-28.

Model 2 ceramic cylinder.

Model 1 ceramic cylinder.

Steel plug serving as end closure for 6-inch-OD ceramic cylinder.

Model 2 titanium hemisphere; 20,000-psi design pressure.

Model 1 titanium hemisphere; 9,000-psi design pressure.

Ceramic hemisphere; 20,000-psi design.

End ring for ceramic hemisphere.

End cap for Models 2 and 3 ceramic cylinders.

Encapsulation of ceramic bearing surfaces in metallic end caps against fretting.

Titanium and ceramic hemispheres serving as end closures for 6-inch-OD ceramic cylinders.

Components of 6-inch-OD ceramic housing assembly.

The 6-inch-OD ceramic housing assembly using ceramic end closures.

Joint stiffened ceramic housing assembly; Type Y; 2 cylinder sections Mod 2.
Joint stiffened ceramic housing assembly; Type W. 4 cylinder sections Mod 2.
Joint ring stiffener B; critical pressure >18,000 psi.

Joint ring stiffener C; critical pressure >18,000 psi.

Components of 6-inch-OD ceramic housing Type Y joint ring stiffener B.
Components of 6-inch-OD ceramic housing Type Y; joint ring stiffener C.
Joint ring D; drawing.

Joint ring D; exterior view.

Joint ring F; drawing.

Joint ring F; exterior view.

Joint ring E; drawing.

Joint ring G; drawing.

Joint ring H; drawing.

Type W ceramic housing components prior to assembly.

Type W ceramic housing components assembied.

Model 3 ceramic cylinder.
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A-29.
A-30.
A-31.

A-32.
A-33.
A-34.
A-35.

A-36.
A-37.
A-38.
A-38.
A-40.
A-41.
A-42,
A-43.
A-44,
A-45.
A-46.
A-47.
A-48.
A-49,
A-50.
A-51.
A-52.
A-53.
A-54.
A-55.
A-56.

A-57.

internally stiffened ceramic housing Type X.

Components of 6-inch-OD ceramic housing Type X.

A single Type 3 internally stiffened ceramic cylinder replaces two Type 2 ceramic cylinders and a
joint stiffener.

Internal midbay stiffeners for Type 3 ceramic cylinders.

Type 3 ceramic cylinder with internal midbay stiffener.

Internal midbay stiffener, Mod O.

Internal midbay stiffeners for Type 3 ceramic cylinders. Critical pressure of Type 3 cylinders is
18,000 psi with Mod 0, 9,800 psi with Mod 1, and 15,000 psi with Mod 2 internal stiffeners.

Midbay stiffener Mod 1.

Midbay stiffener Mod 2.

Location of strain gages on midbay stiffener Mod 0.
Strains on midbay stiffener Mod 0; locations D, DD, DDD.
Strains on midbay stiffener Mod 0; location E.

Strains on midbay stiffener Mod 0; iocation F.

Stresses on midbay stiffener Mod 0.

Location of strain gages on midbay stiffener Mod 1.
Midbay stiffeners Mod 1 before and after failure of Model 3 ceramic cylinder at 9,800 psi.
Strains on midhay stiffener Mod 1; locations D, DD, DDD.
Strains on midbay stiffener Mod 1; locations X, XX, XXX,
Strains on midbay stiffener Mod 1; locations E, EE.
Strains on midbay stiffener Mod 1; locations F, FF.
Stresses on midbay stiffener Mod 1.

Location of strain gages on midbay stiffener Mod 2.
Strains on midbay stiffener Mod 2; locations D, DD, DDD.
Strains on midbay stiffener Mod 2; locations X, XX, XXX.
Strains on midbay stiffener Mod 2; locations E, EE.
Strains on midbay stiffener Mod 2; locations F, FF.

Stress on midbay stiffener Mod 2.

Ceramic cylinder Mode! 3 prior to assembly with wooden plugs and metal bulkheads for implosion
testing.

Typical setup for implosion testing of Models 1 and 2 ceramic cylinders.

A-3
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A-58.

Graphic solution to R. von Mises analytical equation for buckling of monocoque cylinders
between plane bulkheads providing radial support. if hemispherical bulkheads are used, add
0.3D to the length of the cylinder.

A-59. Graphic solution to R. von Mises analytical equation for buckling.

A-60. Graphic solution to R. von Mises analytical equation for buckling.

A-61. Graphic solution to R. von Mises analytical equation for buckling.

TABLES

A-1.  Six-inch-diameter housing test assemblies used in pressure testing.

A-2. Summary of pressurizations performed on 6-inch-diameter housing assemblies.

A-3.  Weight of structural components in 6-inch-diameter housing assemblies.

A-4.  Strains on aluminum midbay stiffener Mod 0 located inside the 6-inch-OD Model 3 ceramic
cylinder.

A-5.  Stresses on aluminum midbay stiffener Mod 0 located inside the 6-inch-OD Model 3 ceramic
cylinder.

A-6.  Strains on aluminum midbay stiffener Mod 1 located inside the 6-inch-OD Model 3 ceramic
cylinder. '

A-7.  Stresses on aluminum midbay stiffener Mod 1 located inside the 6-inch-OD Model 3 ceramic
cylinder.

A-8.  Strains on aluminum midbay stiffener Mod 2 located inside the 6-inch-OD Model 3 ceramic
cylinder.

A-8.  Stresses on aluminum midbay stiffener Mod 2 located inside the 6-inch-OD Model 3 ceramic
cylinder.

A-10. Critical pressures of 6-inch-OD Model 1, 2, and 3 ceramic cylinders.

A-4
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APPENDIX A: SCALE-MODEL 6-INCH-
DIAMETER HOUSINGS

TEST SPECIMENS

Scale-madel 6-inch-diameter housings served as
test specimens. The reason for choosing the
scale-model housings for the first phase of the pro-
gram was purely economical. Some of the more
risky design options could be evaluated here with
only minor loss of investment in case of cata-
strophic failure. Also, the scale-model housings
could be tested inexpensively in small pressure
vessels equipped for automatic pressure cycling,
while the larger 12-inch-diameter housings could
only be pressure cycled at the Naval Command,
Control and Ocean Surveillance Center
(NCCOSC) RDTA&E Division (NRaD) in large ves-
sels set up for manual operatiun.

To keep the number of variables to a minimum, all
cylinders were fabricated from 94-percent alumina
ceramic to the same dimensions (6.038-inch OD
by 9-inch L by 0.207-inch t) as the Model 2 cylin-
ders in second generation NRaD ceramic housings
(figure A-1). The design hoop stress in these cylin-
ders at 9,000 psi design depth was 137,000 psi.

Since there were two Model 1 cylinders from
99.5-percent alumina left over from the Second
Generation Housing Program (figure A-2), they
were also used in this test program. The design
hoop stress in these cylinders at 9,000-psi design
depth was —148,000 psi.

TEST FIXTURES

Three kinds of end closures served as bulkheads
for testing the scale-model 6-inch-diameter cylin-
ders. Plane steei discs 3-inches thick with a
0.25-inch-deep seat were used for destructive test-
ing of individual cylinders and cylinder assemblies
(figure A-3). The critical pressure generated by
testing with plane bulkheads represent the maxi-
mum elastic stability attainable by a monocoque
cylinder. Titanium hemispheres Model 2 were used
in tests where the cylinder, or cylindrical assembly,
was to be cycled to pressures exceeding the

9,000-psi design pressure (figure A-4). Titanium
hemispheres Model 1 represent the lightest bulk-
heads that can be safely used in proof testing to
10,000 psi and subsequent pressure cycling of
ceramic cylinders, or cylindrical assemblies, to
9,000-psi design pressure (figure A-5). Model 1
titanium hemispheres, because of their fow weight,
would also be the designer’s choice for 6-inch-
diameter operational pressure housings.

CERAMIC END CLOSURES

The first goal of Phase 1 was to demonstrate that
the titanium hemispherical end closures (fig-

ures A-4 and A-5) on the ceramic cylinders can be
replaced with ceramic hemispheres without any
loss in structural performance of the ceramic cylin-
der. The ceramic hemispheres selected for this
purpose were off-the-shelf, as-fired 6-inch-diame-
ter hemispheres manufactured by Coors Ceramics
for industrial applications (figure A-6). These hemi-
spheres were twice as thick as it is required to
meet the 137,000-psi design stress.

No attempt was made, however, to optimize their
thickness by grinding since the goal of the experi-
ment with the scale-model hemispheres was not to
optimize their design, but to demonstrate that
ceramic hemispheres could be mated to the
ceramic cylinder by means of a metallic ring (fig-
ure A-7) similar in design to the metallic caps (fig-
ure A-8) developed for model cylinders in the
second generation NRaD ceramic housing study.
The primary function of both the metal caps on the
cylinders and the nose mounting rings was to
encapsulate the ceramic bearing surfaces from
direct bearing contact with each other, that in time
would lead to fretting and chipping of the ceramic
surfaces due to relative movement between each
other during external pressure loading (figure A-9).
The encapsulation materials and procedures were
identical to those employed previously on scale-
model cylinders during the second generation
Naval Ocean Systems Center (NOSC)* ceramic
housing study (figure A-10).

*NOSC is now the Naval Command, Contro! and
Ocean Surveiliance Center (NCCOSC) RDT&E
Division {NRaD).
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The experimental evaluation of the scale-model
ceramic hemispheres and the associated metailic
mounting rings consisted of fitting them to a
ceramic cylinder (figure A-11) and subjecting the
assembled ceramic housing (figure A-12) to a
series of pressure tests consisting of a proof test
to 10,000 psi, followed by 100 pressure cycles to
9,000 psi and a single overpressure test to
destruction (table A-1). The housing withstood the
proof and cyclic tests without initiation of cracking
or spalling, but imploded at 14,250 psi during
short-term pressurization to failure. Inspection of
the imploded housing components disclosed that
the implosion was initiated by shearing at two loca-
tions of the thin flange on the metallic end cap
bonded to the ceramic hemisphere. Based on this
observation, one can conclude that the cylinder
was deforming into an ellipse and, as a result of
this deformation, the radial forces applied by the
cylinder to the end cap on the hemisphere were
maximized at the minor diameter of the ellipse.
Increasing the thickness of the flange on the end
cap would not significantly increase the critical
pressure of the cylinder.

REMOVABLE JOINT STIFFENERS

The second goal of Phase 1 was to demonstrate
that the radial end support provided by the tita-
nium, or ceramic, hemispheres to the ends of a
ceramic cylinder can be replaced with removable
metallic joint ring stiffeners whose weight and elas-
tic stability can be extensively modified by machin-
ing hoies in the web of the stiffener. The evaluation
of stiffeners was performed with a 6-inch-diameter
housing assembled first from two (Type Y) and
later from four (Type W) ceramic cylinders joined
by ring stiffeners and enclosed at the ends with
titanium spherical bulkheads with penetrations for
instrumentation heads (figures A-13 and A-14).
Seven stiffeners were incorporated into nine cylin-
drical pressure housings assembled from two or
more cylinders closed off at the ends by bulkheads
(table A-1).

As the starting point in evaluation of joint ring stiff-
eners served the titanium ring stiffeners, Types B
and C with T and | cross sections (figures A-15
and A-16) were developed during a previous pro-

gram on the Second Generation NRaD ceramic
housings (reference 8). In that program, joint stiff-
eners B and C were proof tested 10 times to
10,000 psi and pressure cycled 10 and 100 times
to 9,000 psi, respectively, while mounted in a
Type Y pressure housing assembly (figures A-17
and A-18). These tests were repeated in the cur-
rent program to serve as a benchmark for
succeeding tests in which stiffeners with lightening
holes in the web were evaluated (table A-2).

To reduce the weight of the joint stiffener C config-
uration and to make it operationally more accept-
able, a series of holes were drilled in the web of
the stiffener at equal 20-degree intervals (fig-

ures A-19 and A-20), resulting in a new stiffener
configuration, Type D. After proof testing it suc-
cessful’’y to 10,000 psi in a housing configuration
Type Y (figure A-13), the stiffener was removed
and the holes enlarged to form a new stiffener con-
figuration, Type F (figures A-21 and A-22). This
stiffener configuration was subsequently integrated
into the housing assembly Type Y, where it was
proof tested to 10,000 psi and pressure cycied

100 times to 9,000 psi. Following this, it was incor-
porated into housing assembly Type W and proof
tested to 10,000 psi. After successful completion of
these tests, no further enlargement of the holes in
the web of the stiffener was contempiated as it
was concluded that any further reduction of the
stiffener cross section would not reduce its weight
significantly, while, at the same time, it probably
would reduce sufficiently the stiffener’s elastic sta-
bility to trigger buckling of the housing assembly
during proof testing to 10,000 psi. The effect of
holes on the weight of the titanium stiffener is
shown in table A-3.

After optimization of the titanium joint ring stiffener
configuration, similar procedures were followed in
the optimization of the aluminum joint-ring stiffener
Type E (figure A-23). The high-strength aluminum
7,000 alloy series was investigated as the potential
replacement for the expensive Ti-6Al—4Va alloy
used in the fabrication of ring stiffener Types C, D,
and F. it was postulated that the high-strength alu-
minum alloys could handle without yielding the
radial and axial loads to which the joint ring stiff-
ener is subjected, as the maximum axial bearing
and hoop stresses in the stiffener were calculated
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not to exceed 68,000 and —35,000 psi at
10,000-psi proof pressure. The only drawback
associated with the use of aluminum joint rings is
their susceptibility to corrosion on surfaces
exposed to seawater. This drawback, however,
can be eliminated by placing the seal at a location
that the seawater does not wet any portion of the
stiffener.

The aluminum joint ring stiffener configurations
Type G (figure A-24) and Type H (figure A-25),
which were created by machining holes in the web
of stiffener Type E, were pressure proof tested
after being integrated into ceramic housing assem-
blies Type Y and Type W, consisting of two and
four ceramic cylinders, respectively (figures A-26
and A-27). The test results were satisfactory: No
permanent deformation of the aluminum stiffeners
or cracking of the ceramic cylinders was observed.
The weights of the aluminum joint ring stiffeners
are shown in table A-3. it should be noted that dril-
ling holes in the webs of joint ring stiffeners
reduced their weight by approximately 18 percent.

INTERIOR RING STIFFENERS

The third goal of Phase 1 was to demonstrate that
it is feasible to increase the elastic stability of
ceramic monocoque cylinders by providing radial
support at midbay with a metallic ring stiffener
bonded to the interior surface of the cylinder with
epoxy adhesive. The feasibility of this arrangement
was to be demonstrated by fabricating Model 3
(figure A-28) from the same material and with the
same internal and external diameters as pressure
hull Model 2 (figure A-1) used in preceding studies
on the optimization of joint ring stiffeners. The only
difference between Models 3 and 2 was the length,;
Model 3 was twice as long as Model 2, and without
a midbay stiffener the longer Model 3 cylinder, sup-
ported only at the ends, buckied at 8,800 psi
instead of 17,500 psi.

Thus, the function of the fixed midbay stiffener was
to provide the same radial support to a single

L/p = 3 cylinder (figures A-29 and A-30) as the joint
ring stiffener provided to two L/p = 1.5 cylinders
(figures A-13 and A-31). The internal ring stiffener
has many advantages over a joint ring stiffener. It
does not have to be fabricated from materials that

(1) are corrosion resistant in seawater, and

(2) have a compressive yield point in excess of
65,000 psi, since the internal stiffener is neither
exposed to seawater, nor is it subjected to axial
bearing loads between mating ends of cylinders.
The many materials from which a midbay stiffener
may be fabricated besides titanium are aluminum,
magnesium, silicon-carbide reinforced cast alumi-
num, glass or graphite-fiber reinforced plastic,
ceramic, or cermet.

The use of a midbay stiffener represents significant
weight savings, as it eliminates one set of end
caps and a single clamp band associated with a
joint ring stiffener (figure A-32). The cylinder with a
midbay stiffener also generates less hydrodynamic
drag since one of the external clamp bands has
been eliminated. The reduction in cost is also sig-
nificant as the grinding of one pair of ceramic bear-
ing surfaces and the machining of two metallic end
caps and a single clamp band has been eliminated
from the cylindrical housing section.

The midbay stiffeners were machined from
7076-T6 aluminum plate to fit the interior diameter
of the ceramic cylinders with only 0.005-inch radial
clearance. Prior to inserting the stiffener into the
ceramic cylinder, the interior of the cylinder at
midbay was liberally coated with epoxy adhesive
(figures A-32 and A-33). After the epoxy had set,

a bead of elastomeric adhesive (i.e., room-
temperature vulcanizing silicone rubber) was
placed on the ceramic surface near the edge of the
exterior flange on the midbay stiffener. While the
primary purpose of the epoxy adhesive was to fill
the annular clearance and to serve as a bearing
gasket between the interior surface of the cyiinder
and the exterior surface of the stiffener, the pur-
pose of the elastomer adhesive bead was to keep
the stiffener from sliding axially in case the brittle
epoxy debonded from the aluminum stiffener.

The bonding arrangement performed well for the
Model 3 ceramic cylinder with Mod 0 midbay stiff-
ener (figure A-34) during subsequent proof testing
to 10,000 psi, followed by 1,000 pressure cycles to
9,000 psi. After successful completion of pressure
cycling with the Mod 0 stiffener, similar testing was
initiated with Mod 1 and Mod 2 stiffeners (fig-

ures A-33 and A-37). During pressure testing,
strains were recorded on all three types of
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stiffeners (figures A-38 through A-55). The Mod 1
stiffener failed during the proof test by buckling at
9,900 psi (figure A-44), while the Mod 2 stiffener,

like Mod 0, passed all the tests successfully.

Comparison of the data generated by tests of the
Mods 0, 1, and 2 midbay stiffeners (tables A-4
through A-9) resulted in several interesting
observations:

1. Tensile stresses are generated in the stiffen-
ers only on the interior surface of the inside
flange in axial direction; their magnitude at
9,000-psi design pressure is in the 8,500- to
10,500-psi range for all three stiffener configu-
rations.

2. The presence of holes in the stiffener web
introduces large bending moments in the inte-
rior flange oriented in the hoop direction. As a
result of this bending, the hoop stresses mea-
sured on the concave surface of the interior
flange varied with their locations; maximum
compressive stresses are found midway
between web sections directly under the holes
in the web above, while minimum compres-
sive stresses are located directly under the
remaining web sections. For example, in the
Mod 2 stiffener, the average value of hoop
stress in the internal flange, midway between
web sections, is —23,632 psi, while the aver-
age value of hoop stress in the same flange
under the web sections is only 6,366 psi.

3. The presence of holes also introduces high
radial compressive stresses in the web sec-
tions. In the Mod 0 stiffener without holes, the
radial compressive stress on the web is only
—10,249 psi, while in Mod 1 and Mod 2 stiffen-
ers, the value of radial compressive stress on
the web between holes has increased to
-36,371 and —41,066 psi, respectively.

The evaluation of internal midbay stiffeners was
concluded by testing to implosion two Mod 3
ceramic cylinders with Mod 0 and Mod 2 midbay
stiffeners. For these tests, the titanium hemispheri-
cal end closures were replaced with thick, fiat-steel
bulkheads (figure A-57) designed not to fail at

pressures below 20,000 psi. Model 3 ceramic cyl-
inders with a Mod 0 midbay stiffener imploded at
18,000 psi, while the one with a Mod 2 midbay
stiffener imploded at 15,000 psi. There was no
need to perform an implosion test on a Model 3
cylinder supported by a Mod 1 midbay stiffener, as
one of them had already failed at 9,900 psi during
proof testing of the cylinder.

When one compares the critical pressures of the
three different midbay stiffener configurations
(table A-10), it becomes apparent that the drilling
of lightening holes in the web of stiffeners cannot
be justified solely on the basis of weight reduction,
as a 5-percent decrease in weight (Mod 2 versus
Mod O stiffener design) is accompanied by a
16.6-percent reduction in critical pressure of the
ceramic cylinder. There is no doubt that an equiva-
lent weight reduction can be achieved without a
decrease in critical pressure by making the web
and flanges of Mod O stiffeners approximately
5-percent thinner and the height of the web
5-percent higher.

Incorporating holes into the web of the midbay or
joint ring stiffeners is readily justifiable, however,
by the packaging requirements of electronic and
hydraulic subsystems to be located inside the
cylindrical housings some time in the future. The
large holes in the webs of the stiffeners allow
placement of cables and/or hydraulic lines next to
the wall of the cylinder without having to make pro-
visions for U-shaped bends where the cables
and/or hydraulic lines have to clear the stiffeners.

Since the critical pressure of the cylindrical hous-
ing decreases exponentially with the size of holes
in the stiffener web, it behooves the housing
designer to keep the size of the holes to a mini-
mum. If required for placing cables, the holes
should be round, and smaller in diameter than the
height of the midbay stiffener web. Elliptical holes
are less desirable than round holes as they are
more conducive to buckling of the flanges on the
stiffener. Elliptical holes can be safely incorporated
into the web of the stiffeners, provided they do not
exceed the sizes of the holes in interior midbay
stiffener Mod 2 or joint ring stiffeners F (for tita-
nium) and H (for aluminum).
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CONCLUSIONS—PHASE |

1.

The short-term critical pressure of 6-inch-
diameter Model 2 94-percent alumina-ceramic
cylinders with t/Dy, = 0.034 and L/D, = 1.5 and
Model 1 99.5-percent alumina-ceramic cylin-
ders with t/D,, = 0.032 and L/D, = 1.5 has
been found to be in the range of 17,700 to
18,000 psi when radially supported at the
ends by plane-steel bulkheads (figures A-56
and A-57), and 14,250 psi when supported by
ceramic or titanium Mode!l 2 hemispheres
(table A-10). With Model 1 titanium hemi-
spheres, the short-term critical pressure is
only 11,250, as these hemispheres were

designed to provide maximum buoyancy with 5

the absolute minimum safety factor (SF) for a
housing with 9,000 psi design pressure. Thus,
the SF against buckling at 9,000-psi design
depth varies from 1.25 to 2, depending on the
type of radial support to the cylinder ends.

At 9,000-psi design pressure, the maximum
compressive stress of 94-percent alumina
Model 2 cylinders with t/D, = 0.0344 and
L/Dy = 1.5 is —135,785 psi in hoop direction.
This provides the Model 2 cylinder at design
pressure with a nominal SF of 2.2 based on
the nominal uniaxial compressive strength of
—300,000 psi for 94-percent alumina ceramic.
For a 99-percent alumina Model 1 cylinder
with a t/D,, = 0.0313 and L/D, = 1.5, the maxi-

mum compressive hoop stress is —148,350 6.

psi, providing it with an SF of 2 based on its
compressive strength.

External pressure housings made up of a
single monocoque ceramic cylinder supported
at the ends by plane or hemispherical bulk-
heads can be extended in iength by mechani-
cally joining several cylindrical sections with
removable joint stiffeners that provide radial
support to the cylinder ends. By selecting the
proper moment of inertia for the joint stiffener,
the buckling pressure of the housing made up
of several cylindrical sections can be made to
equal, or surpass, the buckling pressure of a
single monocoque cylinder supported radially
at the ends with plane or spherical bulkheads.

A-9

The length of a single monolithic monocoque
Model 2 cylinder with /D, = 0.0344 can be
increased beyond L/D, = 1.5 without decreas-
ing its buckling pressure, provided that metal-
lic ring stiffeners are bonded to its interior at
LD, < 1.5 intervals.

Extending the length of a single monocoque
cylinder from t/Do = 1.5 to 3 and inserting an
internal stiffener adds less weight to the struc-
ture than joining two L/D, = 1.5 cylinders with
a joint stiffener (approximately 4 percent less).
it also is less expensive to fabricate, as it
eliminates the grinding of two ceramic bearing
areas and the machining of two titanium end
caps.

The cyclic fatigue of 94-percent alumina-
ceramic monolithic cylinders with /D, =
0.0344 and 99.5-percent alumina cylinders
with t/D,, = 0.313 thickness is in excess of
1,000 pressure cycles to 9,000 psi when the
ends are protected by metallic end caps
bonded to them by epoxy adhesive. The
depth of the annular seat in the end cap
exceeds the thickness of the cylinder by

50 percent. Without end caps, the cyclic
fatigue life is less than 50 cycles, as the differ-
ential movement between the bare ends of
cylinders and metallic bearing surfaces initi-
ates shear cracks in the ceramic bearing sur-
face that propagate inward with each
succeeding pressure cycle.

The cyclic fatigue life of Model 2 alumina-
ceramic polylithic cylinder assembly consist-
ing of 94-percent alumina rings joined by
nickel brazing was found also to exceed

1,000 pressure cycles when the ends of the
cylinder were protected by metallic end caps
in the same manner as the monolithic Model 2
cylinder.

The ceramic hemispheres provide the
required radial support to the ceramic cylinder
ends by bonding to its equator a metallic end
cap with a lip that matches the internal diame-
ter of the end cap on the cylinder.

The monocoque ceramic cylinders, Models 1
and 2, supported at their ends by ceramic, or
titanium, hemispheres with equivalent radial
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stiffness fail by buckling at pressures that are
approximately 20-percent smaller than when
they are supported by plane-metaliic bulk-
heads.

The external pressure at which a single
ceramic monocoque cylinder supported
radially at the ends by plane bulkheads will
buckle can be predicted with £-10 percent
accuracy by the graphic solution of the von

A-10

Mises equation for elastic instability of cylin-
ders (figures A-58 through A-61). The same
graphic solution applies to a single ceramic
monocoque cylinder supported radially at the
ends by ceramic or metallic hemispherical
bulkheads, provided that (1) the radial stiff-
ness of the hemispheres equals that of the
cylinder, and (2) one substitutes the expres-
sion (L + 0.33 D,) for L in the L/D,, ratio while
reading the graph'’s abscissa.
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FLEXURAL STRENGTH > 50,000 pe!
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Figure A-1. Model 2 ceramic cylinder.
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Figure A-2. Model 1 ceramic cylinder.
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MATENAL: 6348 NEAT TREATED STEEL
NOTE: ALL DIMENSIONS ARE IN INCHES

Figure A-3. Steel plug serving as end closure
for 6-inch-OD ceramic cylinder.
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NOTES:
1. MATL: TITANIUM, GAL-4V.

2. INSIDE CONTOUR TO BE TRUE
MEMISPHERICAL RADIUS.

3. OUTSIDE

5 CONTOUR DIMENSION
FOR TRACER LATHE PATTERN.

4. REF DIMENSION PROVIDED TO
CHECK TEMPLATE

2]
—
3.124 SPHERICAL R T VIEW B
FROM POINT 1
X=0.108 Y
Y =0.108

Figure A-4. Model 2 titanium hemisphere; 20,000-psi design pressure.
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HEMISPHERICAL RADWS. ! Y
3. CUTSIDE CONTOUR DIMENSION X =0.108

FOR TRACER LATNE PATTERN. Y= 0.108
4 REF DIMENSION PROVIOED TO SECTION A-A

CHECK TEMPLATE.

Figure A-5. Model 1 titanium hemisphere; 9,000-psi design pressure.

EXPANSION AT ROOM TEMP 4 X 104/F

Figure A-6. Ceramic hemisphere; 20,000-psi design.
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Figure A-7. End ring for ceramic hemisphere.
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Figure A-8. End cap for Modeis 2 and 3
ceramic cyfinders.
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METALLIC

EPOXY CAP
ADHESIVE END

L/

Z
’////// DETAIL

MONOCOQUE
CERAMIC CYLINDER

EPOXY 0.01 THICK

METALLIC END CAP 0.05 THICK
END CLOSURE

CERAMIC

CARDBOARD SPACERS
1/4 x 1/8 x 0.01 THICK

BEARING DETAIL

Figure A-9. Encapsulation of ceramic bearing surfaces in
metallic end caps against fretting.

Figure A-10. Titanium and ceramic hemispheres serving as
end closures for 6-inch-OD ceramic cylinders.
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Figure A-11. Components of 6-inch-OD ceramic housing assembly.

Figure A-12. The 6-inch-OD ceramic housing assembly using ceramic end closures.
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TITANIUM END CAP TYP CERAMIC CYLINDER MODEL 2
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DETAIL B

STIFFENER
TYPESC,D,E,F,G,orH

Figure A-13. Joint stiffened ceramic housing assembly; Type Y: 2 cylinder sections Mod 2.
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DETAIL B DETAIL A

Figure A-14. Joint stiffened ceramic housing assembly; Type W; 4 cylinder sections Mod 2.
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Figure A-15. Joint ring stiffener B; critical pressure =>18,000 psi.
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Figure A-16. Joint ring stiffener C; critical pressure =>18,000 psi.
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Figure A-18. Components of 6-inch-OD ceramic housing Type Y; joint ting stiffener C.
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MATERIAL: TITANIUM ALLOY SAL4VA

Figure A-19. Joint ring D; drawing.

Figure A-20. Joint ring D; exterior view.
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MATERIAL: ALUMINUM ALLOY 7075-T6

Figure A-23. Joint ring E; drawing.
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MATERIAL: ALUMINUM ALLOY 7075-T6

Figure A-24. Joint ring G; drawing.

A-22




DIA

6.150

1/8R

18R

Y
0700
0.690

{

U

MATERIAL: ALUMINUM ALLOY 7075-T6

Figure A-25. Joint ring H; drawing.

Figure A-26. Type W ceramic housing components prior to assembly.
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Figure A-27. Type W ceramic housing components assembied.
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Figure A-28. Model 3 ceramic cylinder.
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TP
5.824 ID
TITANIUM END CAP TYP

Figure A-29. internally stiffened ceramic housing Type X.

Figure A-30. Components of 6-inch-OD ceramic housing Type X.
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Figure A-31. A single Type 3 internally stiffened ceramic cylinder
replaces two Type 2 ceramic cylinders and a joint stiffener.
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. MOD 1
&2:83 '2“ MOD 2 5.495 DIA 6.038 DIA
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3.625 DIA 360 DI
MOD 2

Figure A-32. Internal midbay stiffeners for Type 3 ceramic cylinders.

A-26




FEATURED RESEARCH

Figure A-33. Type 3 ceramic cylinder with internal midbay stiffener.
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MATERIAL: ALUMINUM ALLOY 7075-T6

Figure A-34. Internal midbay stiffener; Mod 0.
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Figure A-35. Internal midbay stiffeners for Type 3 ceramic cylinders. Critical pressure
of Type 3 cylinders is 18,000 psi with Mod 0, 9,800 psi with Mod 1, and 15,000 psi with

Mod 2 internal stiffeners.
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MATERIAL: ALUMINUM ALLOY 7075-T6

Figure A-36. Midbay stiffener Mod 1.
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Figure A-37. Midbay stiffener Mod 2.

1/84 R\_" |<_ ::_Ss:

i\
€
A B 1/8 R TYP
5.490 3.290 5610
3.625 DIA
3.620
.} 0700 | ]
0.690
Y |
F
Y LAy
mEyas
Ty GAGES: TYPE CEA-13-082WT-350

1198 MATERIAL: ALUMINUM ALLOY 7075-T¢

Figure A-38. Location of strain gages on midbay stiffener Mod 0.
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Figure A-39. Strains on midbay stiffener Mod 0; locations D, DD, DDD.
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Figure A-40. Strains on midbay stiffener Mod 0; location E.
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Figure A-41. Strains on midbay stiffener Mod 0; location F.
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Figure A-42. Stresses on midbay stiffener Mod O.
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Figure A-43. Location of strain gages on midbay stiffener Mod 1.

Figure A-44. Midbay stiffeners Mod 1 before and after failure of Model 3 ceramic cylinder at 9,800 psi.
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Figure A-45. Strains on midbay stiffener Mod 1; locations D, DD, DDD.
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Figure A-46. Strains on midbay stiffener Mod 1; locations X, XX, XXX.
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Figure A-47. Strains on midbay stiffener Mod 1; locations E, EE.
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Figure A-48. Strains on midbay stiffener Mod 1; locations F, FF.
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Figure A-49. Stresses on midbay stiffener Mod 1.
1/64 R 0.255
S 0.250
1
F{ F
‘ /B8R TYP
s |so | | B | |80
1+ 5o [t
\
’ I
Y 3 EE I3
Reras
1.198 GAGES: TYPE CEA-13-082WT-350
MATERIAL: ALUMINUM ALLOY 7075-T¢

Figure A-50. Location of strain gages on midbay stiffener Mod 2.
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Figure A-51. Strains on midbay stiffener Mod 2; locations D, DD, DDD.
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Figure A-52. Strains on midbay stiffener Mod 2; locations X, XX, Y00X.
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Figure A-83. Strains on midbay stiffener Mod 2; locations E, EE.
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Figure A-54. Strains on midbay stiffener Mod 2; locations F, FF.
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Figure A-55. Stress on midbay stiffener Mod 2.

Figure A-56. Ceramic cylinder Model 3 prior to assembly with wooden
plugs and metal bulkheads for implosion testing.
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Figure A-57. Typical setup for implosion testing of Models 1 and 2 ceramic cylinders.
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NUMBER OF LOBES INTO WHICH A TUBE WiLL COLLAPSE WHEN
SUBJECTED TO UNIFORM RADIAL AND AXIAL EXTERNAL PRESSURE
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Figure A-58. Graphic solution to R. von Mises analytical equation for buckling
of monocoque cylinders between plane bulkheads providing radial support. If
hemispherical bulkheads are used, add 0.3D to the length of the cylinder.
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DIMENSIONLESS COLLAPSING PRESSURE : P/E * 10’

COLLAPSING PRESSURE OF TUBES

SUBJECTED TO UNIFORM RADIAL AND AXIAL EXTERNAL PRESSURE
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Figure A-59. Graphic solution to R. von Mises analytical equation for buckling.
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COLLAPSING PRESSURE OF TUBES
SUBJECTED TO UNIFORM RADIAL AND AXIAL EXTERNAL PRESSURE
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Figure A-60. Graphic solution to R. von Mises analytical equation for buckling.
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COLLAPSING PRESSURE OF TUBES
SUBJECTED TO UNIFORM RADIAL AND AXIAL EXTERNAL PRESSURE
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Figure A-61. Graphic solution to R. von Mises analytical equation for buckling.
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FEATURED RESEARCH
Table A-3. Weight of structural components in 8-inch-diametar housing assemblies.
Cylinder, Ceramic Model 2, 94% alumina 2056 grams
6.04 in OD X 9 in L X 0.206 in thick
Cylinder, Ceramic Model 3, 94% alumina 4110 grams
6.04 in OD X 18 in L X 0.206 in thick
Hemisphere, Titanium, Model 1* (single) 673 grams
Hemisphere, Titanium, Model 2+ (single) 1257 grams
Hemisphere, Ceramic with end ring (single) 765 grams
End Caps
Titanium (pair) 120 grams
Aluminum (pair) 70 grams
Joint Ring Stiffener, Titanium
Type B 441 grams
Type C 357 grams
Type D 317 grams
Type F 294 granms
Joint Ring Stiffener, Aluminum
Type E 346 grams
Type G 302 grams
Type H 283 grams
Midbay Stiffener, Aluminum
Mod O 319 grams
Mod 1 261 grams
.Mod 2 304 grams
Weight/Displacement
Cylinder, Model 2 with Titanium end caps 0.503
Cylinder, Model 2 with Titanium end caps and
two Titanium Hemispheres Model 1 0.567

Cylinder, Model 3 with Titanium end caps,

Mod 2 interior midbay stiffener and

two Titanium hemispheres Model 1 0.56
Cylindrical Assembly, two Model 2 cylinders

joined with Type F ring stiffener, and

closed by two Titanium Hemispheres Model 1 0.57
Cylinder, Model 3 with Titanium end caps,

Mod 0 interior midbay stiffener, and

two Titanium Hemispheres Model 2 0.64

* The critical buckling pressure of titanium hemispheres Model 1 is
11,250 psi and of Model 2 is 23,000 psi
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FEATURED RESEARCH
Table A-5. Stresses on aluminum midbay stiffener Mod O located inside the 6-inch-OD Model 3 ceramic cyiinder.
Gage Locations
Inside Diameter Under Webs Flange Web
Pressure D DD DDD E F
(PSI) Hoop  Axial Hoop  Axial Hoop  Axial Hoop  Axial Boop  Axial

0 0 0 0 0 0 0 0 0 0 0

1000  -1602 901 -238 461 2048 974  -2400 -1152 -7% -323

2000 -4117 1793  -2899 1303  -5021 1872  -B217  -2841 -3320  -1485

Joo0 -781 2902  -5674 2347  -8085 2981 -8019 4396  -5967 -2569

4000 -10769 3905 -8176 3281 -10882 3988 -10587 -5783 -8419  -3638

5000 -13844 5040 -10842 4291 -13814 5099 -13263 -7136 -11025 -4748

6000 -16690 6050 -13238 5240 -16503 6102 -15685 -8296 -13425  -5750

7000 -19750 7170 -15811 6230 -19469 7143  -18302 -9409 -16072 6894

8000 -22929 8290 -18387 7240 -22401 8255 -20863 -10444 -18701  -7981

9000 -26105 9242 -20944 8066 -25363 9157 -23395 -11480 -21429  -9281

10000 -29097 10354 -23258 9022 -28100 10223 -25650 -12134 -23908 -10249

NOTES: ALL Stresses are in pounds per square inch, calculated on the basis of E = 10,000,000

and N = .33
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FEATURED RESEARCH
Table A-8. Strains on aluminum midbay stiffener Mod 2 located inside the 6-inch-OD Model 3 ceramic cylinder.

Gage Locations
‘Inside Diameter Under Webs Inside Diameter Between Webs
Pressure D ) ) X X X
(PSI)  Boop Axial  Boop Adial  Boop Axial  Boop Axial  Hoop Muial  Boop  Axial
0 0 0 0 0 0 0 0 0 0 0 0 0
1000 -135 107 2 # N 8 -8 14 -159 0 -229 68
2000 265 242 -3 188 183 24 583 245 -4 189 -524 188

3000 -39 369 ~118 305 ~296 kvl -819 366 =102 301 ~816 29%
4000 ~526 506 =219 L ) -407 453 -1176 496 =970 521  -1106 415
5000 -652 634 ~368 549 -516 574  -l464 618  -1229 531  -13%0 529
6000 -185 m ~455 674 -630 06 -1760 150 -8 651  -1666 664
7000 -915 905 ~535 190 ~145 830  -2040 8710 -1728 760 -1939 181
8000  -1050 1040 ~606 906 ~865 %5 -2 1000 -1978 875  -2238 912
9000 -1190 175 ~662 1000 -983 1085  -2625 1123 -2199 970  -2526 1032
10000  -1360 1308 ~692 1100 -1115 1208 -2017 1282 -2400 1057  -2820 1165

Flange Web
Pressure E EE F FF
(PSIT) Hoop  Axial Hoop  Axial Hoop  Axial Hoop  Axial

0 0 0 0 0 0 0 0 0
1000 ~160 18 -40 =70 u -349 26 =350
2000 -416 9 ~281 -148 98 -804 66 =191
3000 -668 152 ~545 -141 139 -1248 104 -~1240
4000 =910 209 -801 -127 191 -1697 140  -1680
5000 -1136 254 -1067 -% 29 -an 172 -2093
6000  -1348 312 -1317 -80 306 -2541 209  -2536
7000  -1566 81 -1575 -49 3B5  -2938 24 -292
8000  -1800 468  -1828 -15 41 -33%9 216 -3366
9000  -2042 547  -2102 25 458 -319 11 -

10000  -2276 640  -2365 68 515  -4130 U3 -4225

NOTES:
Gages: Gage Type: CEA~13-062-350; Gage Factor 2.15
Test Assembly:
1. One Ceramic Cylinder 6 in OD x 18 in L radially supported at Nidbay by an alwinum ring stiffener bonded
to the Ceramic Cylinder with epoxy
2. The Cylinder is capped with Titanium Hemispheres WG 55910-0106069 on Both Ends
Materials: The Ceramic is Coors AD 94 (94% Alwmina); The Alwminwm is 7075-T6 alloy
Data: All Readings are in microinches/inch
Structural Performance: Did not implode at 10,000 psi
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FEATURED RESEARCH

All appendix B figures and tables are placed at the end of appendix B text.

B-1.
B-2.
B-3.
B-4.
B-5.
B-6.
B-7.
B-8.
B-9.

B-10.
B-11.

B-12.
B-13.
B-14.
B-15.
B-16.
B-17.
B-18.
B-19.
B-20.
B-21.
B-22.
B-23.
B-24.
B-25.
B-26.
B-27.

Configuration of joint ring stiffeners described in appendix B.

Joint stiffener and coupling for ceramic cylinders for housing test assemblies 1A through 1F.
Coupling of ceramic cylinders to titanium bulkheads for housing test assemblies 1A through 1F.
List of components comprising housing test assemblies 1A through 1F.

Housing assembly 1A during placement in the pressure vessel for external pressure testing.
Ceramic cylinders used in housing test assembilies.

Polyurethane jacket for ceramic cylinders.

Mod 0 end cap for ceramic cylinders.

Ceramic cylinder assembly.

Wedge clamp for coupling cylinder assemblies and bulkheads in housing test assembilies.

Optimized titanium end bell for 9,000-psi service used as bulkhead in housing test assemblies
1A through 1F.

Wedge band for coupling ceramic cylinders to titanium end bells.
Titanium end bell for 10,000-psi service (not used in this test program).
Ceramic housing test assembly 1A,

Ceramic housing test assembly 1A during instrumentation with strain gages.
Titanium ring stiffener DWG 0119738, fabrication drawing.

Titanium ring stiffener DWG 0119738; exterior view.

Titanium ring stiffener DWG 0119738; locations of strain gages.
Strains on housing test assembly 1A; locations A, AA.

Strains on housing test assembly 1A; location BB.

Strains on housing test assembly 1A; locations C, CC.

Strains on housing test assembly 1A,; locations D, DD, DDD.

Strains on housing test assembly 1A; locations E, EE.

Strains on housing test assembly 1A; iocations F, FF.

Strains on housing test assembly 1A; locations G, GG.

Strains on housing test assembly 1A; iocation H.

Strains on housing test assembly 1A; locations |, K.
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B-28.
B-29.

B-31.

B-37.

B-42.

B-44.

B-47.
B-48.
B-49.
B-50.
B-51.
B-52.
B-53.
B-54.
B-585.
B-56.
B-57.

B-59.

Strains on housing test assembly 1A; location M.

Stresses on housing test assembly 1A; iocation-titanium end bell DWG 0119737.
Stresses on housing test assembly 1A; location—ceramic cylinder ends.

Stresses on housing test assembly 1A; location—ceramic cylinder midbay.
Stresses on housing test assembly 1A; location-titanium joint ring DWG 0119738.
Titanium ring stiffener DWG 0123943; fabrication drawing.

Titanium ring stiffener DWG 0123943; exterior view.

Titanium ring stiffener DWG 0123943; location of gages.

Strains on housing test assembly 1B; locations D, DD, DDD.

Strains on housing test assembly 1B; locations X, XXX, XXX.

Strains on housing test assembly 1B; locations E, EE.

Strains on housing test assembly 1B; locations F, FF.

Stresses on housing test assembly 1B; location—titanium joint ring DWG 0123943,
Titanium ring stiffener DWG 0121604, fabrication drawing.

Titanium ring stiffener DWG 0121604; exterior view.

Titanium ring stiffener DWG 0121604, location of gages.

Failed ring stiffener DWG 0121604 after implosion of housing test assembiy 1C at 9,910 psi.
Strains on housing test assembly 1C; locations D, DD, DDD.

Strains on housing test assembly 1C; locations X, XX, XXX.

Strains on housing test assembly 1C; locations E, EE.

Strains on housing test assembly 1C; locations F, FF.

Stresses on housing test assembly 1C; locationtitanium joint ring DWG 0121604.
Aluminum ring stiffener DWG 0124007; fabrication drawing.

Aluminum ring stiffener DWG 0124007; exterior view.

Aluminum ring stiffener DWG 0124007; location of gages.

Strains on housing test assembly 1D; locations D, DD, DDD.

Strains on housing test assembly 1D; location E.

Strains on housing test assembly 1D; location F.

Stresses housing test assembly 1D; location—aluminum joint ring DWG 0124007.
Aluminum ring stiffener DWG 0124008; fabrication drawing.

Aluminum ring stiffener DWG 0124008; exterior view.

Aluminum ring stiffener DWG 0124008; location of gages.
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B-81. Strains on housing test assembly 1F; locations X, XX, X00C

B-62. Strains on housing test assembly 1F; locations E, EE.

B-63. Strains on housing test assembly 1F; locations F, FF.

B-64. Stresses on housing test assembly 1F; location-titanium joint ring DWG 0124008.

B-65. Aluminum ring stiffener DWG 0121605; fabrication drawing.

B-66. Aluminum ring stiffener DWG 0121605; exterior view.

B-67. Aluminum ring stiffener DWG 0121605; location of gages.

B-68. Strains on housing assembiy1E; locations D, DD, DDD.

B-69. Strains on housing test assembly 1E; locations X, XX, X00K.

B-70. Strains on housing test assembly 1E; locations E, EE.

B-71. Strains on housing test assembly 1E; locations F, FF.

B-72. Stresses housing test assembly 1E; location-aluminum joint ring DWG 0121605.

TABLES

B-1.  Twelve-inch-diameter ceramic housing test configurations for evaluation of joint ring stiffeners,
Sheet 1.

B-1. Twelve-inch-diameter ceramic housing test configurations for evaluation of joint ring stiffeners,
Sheet 2.

B-2. Summary of test performed on 12-inch-diameter ceramic test housings during evaluation of joint
ring stiffeners.

B-3. Waeights of structural components in 12-inch-diameter ceramic test housings.

B-4.  Strains on titanium ring stiffener DWG 0119738 in housing test assembly 1A, Sheet 1.

B-4. Strains on titanium ring stiffener DWG 0119738 in housing test assembly 1A, Sheet 2.

B-5. Principal stresses on titanium ring stiffener DWG 0119738 in housing test assembly 1A, Sheet 1.

B-5. Principal stresses on titanium ring stiffener DWG 0119738 in housing test assembly 1A, Sheet 2.

B-6. Strains on ceramic cylinder DWG 0119735 in housing test assembly 1A.

B-7.  Principal stresses on ceramic cylinder DWG 0119735 in housing test assembly 1A.

B-8.  Strains on titanium end bell DWG 0119737 in housing test assembly 1A,

B-9. Principal stresses on titanium end bell DWG 0119737 in housing test assembly 1A.

B-10. Principal strains and stresses at apex of titanium end bell DWG 0119737.

B-11. Strains on the titanium ring stiffener DWG 0123943 in housing test assembly 1B.

Strains on housing test assembly 1F; locations D, DD, DDD.
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B-12.
B-13.
B-14.
B-15.
B-16.
B-17.
B-18.
B-19.
B-20.

Principal stresses on the titanium ring stiffener DWG 0123943 in test housing assembly 1B.
Strains on titanium ring stiffener DWG 0121604 in housing test assembly 1C.

Principal stresses on titanium ring stiffener DWG 0121604 in housing test assembly 1C.
Strains on aluminum ring stiffener DWG 0124007 in housing test assembly 1D.

Principal stresses on aluminum ring stiffener DWG 0124007 in housing test assembly 1D.
Strains on aluminum ring stiffener DWG 0121605 in housing test assembly 1E.

Principal stresses on aluminum ring stiffener DWG 0121605 in housing test assembly 1E.
Strains on aluminum ring stiffener DWG 0124008 in housing test assembly 1F.

Principal stresses on aluminum ring stiffener DWG 0124008 in housing test assembly 1F.
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APPENDIX B: MECHANICAL JOINTS
WITH INTEGRAL JOINT RING
STIFFENERS FOR CERAMIC
CYLINDERS

INTRODUCTION

The basic ceramic cylindrical housing consists of a
ceramic monocoque cylinder sealed and radially
supported at the ends by metallic or ceramic bulk-
heads. The resistance to buckling of the monoco-
que cylinder is a function not only of its E, t/D,,
and L/D,, ratio, but also of the radial compliance of
supports provided by the bulkheads.

For such a basic ceramic cylindrical housing, the
only approach to increasing its payload rating is to
increase the diameter without changing the t/D,
and L/D,, ratios, or to increase the length and thick-
ness without changing the diameter. The first
approach does not change the weight-to-
displacement (W/D) ratio, while the second
approach increases it significantly. Furthermore,
serious manufacturing difficulties are encountered
if the L/D,, exceeds 1.5 for cylinders with Dy>12
inches.

Since there are many applications that call for
additional payload capability while, at the same
time, preclude increasing housing diameter, an
alternate approach had to be developed that allows
the extension in length of the cylindrical housing
without a significant increase in manufacturing
cost, or W/D ratio. The alternate approach devel-
oped by Dr. Stachiw of the Naval Ocean Systems
Center (NOSC)* (Reference 1) consists of main-
taining the same L/D,, and /D, for each cylindrical
section even though the overall length of the hous-
ing is increased to generate the specified buoy-
ancy for the housing. This is accomplished by
NOSC mechanical joints that fasten together, pro-
vide radial support, and seal the ends of the cylin-
drical sections.

The NOSC mechanical joint consists of two end
caps that enclose the ends of adjoining cylinders, a
ring stiffener (with integral O-ring seals) that

*NOSC is now the Naval Command, Controt and Ocean
Surveillance Center (NCCOSC) RDT&E Division (NRaD).

provides radial support to the end caps, and a spilit
wedge band clamp that locks the end caps and the
ring stiffener together. The radial compliance of the
ring stiffener can be designed to simulate the radial
support provided by either a hemispherical or
plane bulkhead fabricated from metal or ceramic.
In either case, the weight of stiffener is significantly
less than that of the type of bulkhead it replaces.

Thus, the designer can extend a ceramic cylindri-
cal housing to any length without increasing its
W/D ratio. The ability to do this makes the cyiindri-
cal ceramic housing a more attractive choice, as it
allows the designer to extend the length of the
housing by adding identical shell sections, rather
than having to increase the length and thickness of
a single monocoque cylinder.

Since the removable joint ring stiffener is, beside
the end caps, a key element of the joint, extensive
efforts have been devoted in this program to their
design and evaluation. The design of end caps is
described in detail separately in appendix D.

DESIGN OF JOINT RING STIFFENERS

The primary objective of the joint ring stiffener
design is to provide sufficient radial support to the
ends of adjoining cylinders at the joint so that the
failure of the housing takes place by buckling of
individual cylinders at the midbay, rather than by
general buckiing of the whole cylindricai assembly.
If this objective is attained, the structural perfor-
mance of each cylindrical section becomes inde-
pendent of other sections, and the length of the
cylindrical housing assembly can be increased by
any number of cylindrical section modules without
reducing the critical pressure of the whole assem-
bly.

Such an approach to joint ring stiffener design
does not result, however, in the lightest struc-
ture, since housing assemblies of only two cylin-
ders require, for example, joint ring stiffeners with
less resistance to buckling than assemblies made
up of three, four, or more cylindrical sections.
Thus, for ceramic housing assemblies configured
for an optimum W/D ratio, the joint ring stiffeners
must be custom designed for a specific number
of cylindrical sections. Adding another cylinder
section to such a cylindrical housing assembly to

B-6
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accommodate a bigger payload would, however,
cause the housing to buckle at lesser pressure.

The approach used for the design of the joint ring
stiffeners in this program consisted of sizing the
H-shaped stiffener to provide adequate radial sup-
port for the ends of ceramic cylinders with
1/D,=0.034 and L/D,=1.5 so that they would not
buckle at pressures <13,500 psi when three or
more of them are joined together to form a cylindri-
cal housing supported at the ends by hemispheri-
cal bulkheads.

Since the critical pressures predicted by computer
programs, like BOSORA4, for cylindrical housings
consisting of several cylindrical sections fastened
together by mechanical joints with integral ring
stiffeners may depart by as much as 25 percent
from the experimentally generated critical pres-
sures, the basic stiffener was configured to prevent
tailure of the multi-section cylindrical housing at
calculated pressures <16,000 psi. This provides
adequate insurance for the potential margin of
error between the caiculated and actual critical
pressures. Once this design was experimentally
validated, holes were milled into the web of the
stiffener to reduce its weight.

The perforated stiffener, after instrumentation with
strain gages, was incorporated into a joint between
two ceramic cylinders comprising a cylindrical
housing assembly. If the strains on the ring stiff-
ener did not indicate onset of buckling, the stiffener
would be removed from the housing and the holes
enlarged further. This process was reiterated sev-
eral times until, during a proof test to 10,000 psi,
the divergence of strains signaled the initiation of
buckling. At that point, the design of the holes in
the stiffeners wouid be frozen and the stiffeners
would be considered to represent the minimum
weight design for 8,000-psi design pressure of
cylindrical housings incorporating two cylinder sec-
tions. Some of the holes in the stiffeners were
milled out too large, and because of it, the stiffen-
ers either failed during the pressurization to

10,000 psi, or the pressurization was terminated at
lower pressure to preclude catastrophic failure dur-
ing the pressure test.

TEST SPECIMENS

Two classes of joint ring stiffeners were designed,
fabricated, and experimentally evaluated in this
program. The design of stiffeners in Class T cen-
tered around the physical properties of Ti-6Al4V
alloy, while the design of stiffeners in Class A cen-
tered around the physical properties of 7178-T651
aluminum alloy. The goals of both stiffener ciasses
were, however, the same: (1) design a basic stiff-
ener configuration capable of providing radial sup-
port to alumina-ceramic cylinders with t/Dy=0.034
and L/Dy=1.5 dimensions at 150-percent overpres-
sure, and (2) reduce the weight of the basic stiff-
ener configuration by incorporating lightening holes
into the webs of the stiffeners until the critical pres-
sure of a cylindrical multi-section ceramic housing
supported by these stiffeners exceeds the 9,000-
psi design pressure by only 15 to 25 percent.

Class T Stiffeners

Stiffener Class T consisted of three designs. The
basic stiffener configuration (fiyure B-1A DWG
0119738 and figures B-14 through B-32), was
designed to provide a housing assembly of three
or more cylindrical ceramic sections (L/Do=1.5 and
t/Do=0.034) with critical pressure >13,500 psi. The
design of the basic stiffener was arrived at by scal-
ing up the scale-model stiffener C (appendix A,
figure A-16) whose performance has shown to
exceed the design requirements of this program.

The first modification to the basic stiffener configu-
ration consisted of milling nine elliptical slots with
0.75-inch width and 20-degree arc length at
20-degree intervals (figure B-1B DWG 0123943
and figures B-33 through B-40). The second modi-
fication consisted of enlarging the elliptical slots to
a 1-inch width (figure B-1C DWG 0121604 and
figures B-41 through B-49).

Class A Stiffeners

Stiffener Class A also consisted of three designs.
The basic stiffener configuration (figure B-1D DWG
0124007 and figures B-50 through B-56) was
designed to provide a housing assembly of three
or more cylindrical ceramic sections (L/Do=1.5

and t/Do=0.034) with critical pressure >13,500 psi.
The design was arrived at by scaling up the
aluminum scale-model stiffener (appendix A,
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figure A-23) whose performance has shown to
exceed the design requirements of this program.

The first modification to the basic stiffener configu-
ration consisted of milling nine elliptical siots with
0.75-inch width and 20-degree arc iength at
20-degree intervals (figure B-1F DWG 0124008
and figures B-57 through B-64). The second modi-
fication consisted of enlarging the elliptical siots to
a 1-inch width (figure B-1E DWG 0121605 and
figures B-65 through B-71).

The decision to mill these slots was driven by
weight consideration. Table B-3 lists the housing
component weights, including the weight of the six
different stiffeners.

TEST SETUP

The joint ring stiffeners were experimentally eva-
luated by incorporating them into a ceramic cylin-
drical housing assembly (figures B-2 through B-5
DWG 0119733) consisting of two ceramic cylindri-
cal sections (figure B-6 DWG 0119735) radially
supported at the central joint by the ring stiffener
and at the ends by titanium end bells (figure B-11
DWG 0119737). Each cylindrical section consisted
of two end caps (figure B-8 DWG 0119736) epoxy-
bonded to an alumina-ceramic cylinder (figure B-6)
which in turn was protected by a polyurethane
jacket (figure B-7). Split aluminum bands (figure
B-10 DWG 0119740) clamped around each joint
held all the components of the housing together.
By using the same housing assembly for evalua-
tion cof all joint ring stiffeners, the radial loading to
which the stiffeners were subjected during the
tests was held constant.

After all of the joint ring stiffeners were experimen-
tally evaluated by testing them as a part of the
ceramic housing assembly made up of two cylin-
ders, some of them were incorporated into larger
housing assemblies made up of three and four
ceramic cylinder sections. To preciude buckling
because of the extra radial loading on the stiffen-
ers, caution was exercised in selection of the
stiffener tynes. For the housing with four ceramic
cylinders, only the stiffeners without lightening
holes were selected. The housing with three cylin-
drical sections was fitted with titanium and alumi-
num stiffeners with 0.75-inch wide slots. Table B-1,

Sheets 1 and 2, summarizes the housing configu-
ration tested.
INSTRUMENTATION

All components of the housing test assembly (fig-
ure B-4 DWG 0119733) were instrumented with
electric strain gages to provide an overview of the
structural performance of all housing componerts
during the first proof test with the titanium joint ring
stiffener. If implosion occurred during that test, the
strain data would help identify the component
whose nonlinear deformation initiated buckling of
the housing assembly. If the first proof test was
successful, the recording of strains from gages
from all components, except for stiffener, would be
discontinued as it was aiready shown that these
components were capable of withstanding proof
pressure of 10,000 psi.

Al stiffeners were instrumented with electrical
resistance strain gages at the same locations to
facilitate comparison of strain data generated by
gages on different stiffeners. The locations of inter-
est were (1) the inner surface of the inner flange,
(2) the inner surface of the outer flange, and

(3) the web between flanges. A nonlinear strain
increase at any of these locations would signal
incipient buckling or material yielding, and the test
would be terminated unless someone wished to
observe the failure of the stiffener.

TEST PROCEDURE

The test procedure consisted of proof testing each
test housing to 10,000 psi while the strains were
recorded at 1,000 psi intervals. After sustained
pressurization of 60 minute’s duration, the pres-
sure was decreased at 1,000-psi/minute rate to
zero. The proof test was followed by cyclic pres-
sure testing to 9,000 psi. Following the cyclic pres-
sure tests, the housings were taken apart and
inspected for permanent deformation of the joint
ring stiffeners.

TEST OBSERVATIONS

Buckling

Titanium and aluminum joint ring stiffeners without
lightening holes did not fail at 10,000-psi proof test
pressure. All strains were linear to 10,000 psi.

The titanium joint ring stiffener with 1-inch-wide
slots (figure B-1C DWG 0121604) buckled at
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9,910 psi (figure B-44). The strains departed lin-
earity at 7,500 psi external pressure loading. The
cause of failure was local elastic buckling of the
inner flange under excessively large lightening
holes in the web of the stiffener. Because of the
excessive long spans between web supports, the
inner flange formed a series of lobes between
these supports with maximum tensile hoop
stresses under each web support, and maximum
compressive hoop stresses midway between sup-
ports. At the moment of failure, the compressive
stresses midway between web supports exceeded
—85,000 psi.

The test on the aluminum joint ring stiffener with
1-inch-wide slots (figure B-1E DWG 0124008) was
terminated at 7,000 psi without failure or departure
of strains from linearity. Table B-1 lists the different
test assemblages, and table B-2 is a summary of
proof and cyclic pressure tests run on all test
assemblies. Tables B-4 through B-20 show com-
plete strain and stress breakdowns.

Stress Distribution

Maximum tensile stresses were recorded in all joint
stiffeners on the inside surface of the inner flange
in axial direction. Their magnitude on titanium stiff-
eners at 9,000-psi design pressure varied from
20,000 to 42,000 psi depending on the absence or
presence of lightening holes and their size. On alu-
minum stiffeners, the maximum tensile stress var-
ied from 12,000 to 16,000 psi at the same location.

Maximum compressive stresses were recorded in
all joint stiffeners on the inside surface of the inner
flange in hoop direction. Their magnitude on tita-
nium stiffeners at 9,000-psi design pressure varied
from ~30,000 to —39,000 psi at the same locations.

On joint stiffeners without lightening holes, the
compressive hoop stress was uniform around the
whole circumference of the inner flange, indicating
that the stiffener contracted uniformly under radial
loading. This was not the case on stiffeners with
elliptical lightening hcfes. On such stiffeners, the
inner flange did not contract uniformly; instead, the
inner flange formed ripples, each ripple corre-
sponding to the location of an elliptical hole above.
These local ripples at some strain level spawned
buckling of the inner flange.

Compressive stresses also were recorded on the
inrside surface of the outer flange and on the web
of the stiffener. Their magnitude, however, did not
exceed the compressive stresses on the inside
surface of the inner flange.

FINDINGS

1. Joint ring stiffeners can be scaled up or down
linearly without reduction of their elastic stabil-

ity.

2. Milling of holes in the webs of joint stiffeners
is not an effective approach to reducing their
weight; the small reduction in weight is
accompanied by a large reduction in elastic
stability.

Aluminum 7178-T6 alloy joint ring stiffeners
provide more elastic stability to the cylindrical
housing than Ti—6AI—4V ailoy stiffeners of
equal weight.

4. The joint ring stiffener provides higher elastic
stability to the cylindrical housing than a hemi-
spherical bulkhead of the same material and
weight.

CONCLUSIONS

1. The NOSC mechanical joint, composed of two
end caps bonded to the ends of ceramic cylin-
ders, split band clamp, and a joint ring stiff-
ener, successfully performed three functions.
It aligns and couples mating cylinders
together, seals the interface between them,
and radially supports their ends against buck-
ling.

2. ltis feasible to assemble cylindrica! housing
of infinite length from many identical ceramic
monocoque cylinders by incorporating the
NOSC mechanical joints with integral joint ring
stiffeners.

3. The elastic stability of a cylindrical housing
assembled from many cylindrical ceramic
monocoque cylinders and coupled together by
NOSC mechanical joints can be predicted by
the BOSOR4 computer program within
20 percent of critical pressure.
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RECOMMENDATIONS

1.

For optimum fatigue life of the adjoining
ceramic cylinders, the ends of the cylinders
must be encapsulated in NOSC Mod 1 type 2
end caps (see appendix D).

Joint ring stiffeners without lightening holes
are preferred, as stiffeners incorporating light-
ening holes are more prone to local buckling
of the stiffener web and flanges.

B-10

If there is a requirement for holes in the webs
of stiffeners to act as feedthroughs for electric
cabies or hydraulic lines, it should be met
preferentially by 18 circular holes of 0.75-inch
diameter located uniformly at 20-degree inter-
vals on the web’s mean diameter. Only as the
last resort should one replace the circular
holes with elliptical slots of the same width.
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TITANIUM ALUMINUM
55910-0119738 55910-0124007
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B
55910-0121604
513 b 462 1b
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Figure B-1. Configuration of joint ring stiffeners described in appendix B.
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Figure B-2. Joint stiffener and coupling for ceramic
cylinders for housing test assemblies 1A through 1F.

TITANIUM END CAP

TITANIUM
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Firgure B-3. Coupling of ceramic cylinders to titanium
buikheads for housing test assemblies 1A through 1F.
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Figure B-11. Optimized titanium end bell for 8,000-psi service used as butkhead in housing test assembiies.
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Figure B-14. Ceramic housing test assembly 1A.

Figure B-15. Ceramic housing test assembly 1A during instrumentation with strain gages.

B-25



_ "Bumesp uoneouqe} 'gELE L0 DMA 1eueyis Bun wnuely gi-g einbiy

. " R 2 s | ’ 1 ¢ I
£L6110 /v 31vdS
ONISNOH DJINVYHID v MIA
"W3INIIANILS ONIY
‘ SS-I5408 V2 0B WS el ‘
VAN SRNIL4S W TP
o NOILID35 ij
- 2’ Vephm N v K L
a] =- I AINO 81Y y¥3LNO e S
_oo. [ E H
- 4
wmaumf _ Y —
4P X
RS
—y 90"
Td 2 (00°21 #)
9 |
-
_
; ©
_ o
! [00]
- [@V[E®s60 29 e
_ - ! 0021 @ 1 b
Qv[®500° 2[¢]
ORI B 0 S P
nuMi 052 @ o+ 05721 2
95 - Trnm. 5
lﬁ ¢
} .
w 0z~ &
pr— ” ' b p—
L
100" ; 02¢° r,_ vwa_n A
] _. '-v £5° a
8¢ "1
__ I Ap-Iv9-rL CWNINVAIL lavm )
_— —— : 53108
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Figure B-18. Titanium ring stiffener DWG 0119738, locations of strain gages.
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Figure B-19. Strains on housing test assembly 1A; locations A, AA.
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Figure B-20. Strains on housing test assembly 1A; location BB.
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Figure B-21. Strains on housing test assembly 1A,; locations C, CC.
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Figure B-22. Strains on housing test assembly 1A; locations D, DD, DDD.
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Figure B-23. Strains on housing test assembly 1A; locations E, EE.
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Figure B-24. Strains on housing test assembly 1A; locations F, FF.
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Figure B-25. Strains on housing test assembly 1A; locations G, GG.
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Figure B-26. Strains on housing test assembly 1A; location H.
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Figure B-27. Strains on housing test assembly 1A; locations |, K.
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Figure B-28. Strains on housing test assembly 1A; location M.
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Figure B-29. Stresses on housing test assembly 1A; location—titanium end bell DWG 0119737.
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Figure B-30. Stresses on housing test assembly 1A; location-ceramic cylinder ends.,
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Figure B-31. Stresses on housing test assembly 1A; location—ceramic cylinder midbay.
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Figure B-32. Stresses on housing test assembly 1A; location—titanium joint ring DWG 0119738.
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Figure B-35. Titanium ring stiffener DWG 0125943; location of gages.

B-36

SN N BN . aw A Ay W e ae




FEATURED RESEARCH

11000 ~TTTANINUM JOINT RING LWT INSIDE FLANGE UNDER wEB

10-01
10000 | ch 0-0123043 A
9000 |

.mL

(o /

4000 1

‘ )
{

v

L_FISSEN&Y NC. 1B

3000
LOCATIONS: D, DD, DDD
2000
O HOOP 1
1000+ A AXIAL v
0 F i 2 2 ‘e i 1
-4000 -3000 -2000 -1000 0 1000 2000 3000

STRAIN. MICROINCHES/INCH

Figure B-36. Strains on housing test assembly 1B; locations D, DD, DDD.
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Figure B-37. Strains on housing test assembly 1B; locations X, XX, XXX,
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Figure B-38. Strains on housing test assembly 1B; locations E, EE.
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Figure B-39. Strains on housing test assembly 1B; locations F, FF.
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Figure B-40. Stresses on housing test assembly 18; location—titanium joint ring DWG 0123943,
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FEATURED RESEARCH

Figure B-44. Failed ring stiffener DWG 0121604 after
impiosion of housing test assembly 1C at 9,910 psi.
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Figure B-45. Strains on housing test assembly 1C; locations D, DD, DDD.
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Figure B-46. Strains on housing test assembly 1C; locations X, XX, XXX.
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Figure B-47. Strains on housing test assembly 1C; locations E, EE.
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Figure B-48. Strains on housing test assembly 1C; locations F, FF.
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Figure B-49. Stresses on housing test assembly 1C; location-titanium joint ring

DWG 0121604.
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§ SECTION
GAGES:
TYPE CEA-06-125W-350
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Figure B-52. Aluminum ring stiffener DWG 0124007; location of gages.
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Figure B-53. Strains on housing test assembly 1D; locations D, DD, DDD.
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Figure B-54. Strains on housing test assembly 1D; location E.
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Figure B-55. Strains on housing test assembly 1D; location F.
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Figure B-56. Stresses housing test assembly 1D; location—aluminum joint ring DWG 0124007.
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Figure B-58. Aluminum ring stiffener DWG 0124008; exterior view.
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Figure B-59. Aluminum ring stiffener DWG 0124008; location of gages.
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Figure B-60. Strains on housing test assembly 1F; locations D, DD, DDD.
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Figure B-61. Strains on housing test assembly 1F; locations X, X0, XXX.
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Figure B-62. Strains on housing test assembly 1F; locations E, EE.
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Figure B-63. Strains on housing test assembly 1F; locations F, FF.
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Figure B-64. Stresses on housing test assembly 1F; location-titanium joint ring DWG 0124008.
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Figure B-66. Aluminum ring stiffener DWG 0121605; exterior view.
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Figure B-67. Aluminum ring stiffener DWG 0121605; location of gages.
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Figure B-68. Strains on housing test assembly 1E; locations D, DD, DDD.

:

ALUMINUM JOINT RING ELWT INSIDE FLANGE BETWEEN WEBS
DWG 55010-0121806

-t

L LA

| \§m ﬁ{

\\\

RSSEMELY NO. 1E \o
LOCATIONS: X, XX. XXX

‘o HOOP \&b
A AXIAL

0 ] ]

3000 2000 -3000 -2000 -1000 1000 2000 3000
STRAIN. mcmmcussnnm

. PSI

5553355333

Figure B-89. Strains on housing test assembly 1E; locations X, XX, XXX,
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Figure B-70. Strains on housing test assembly 1E; locations E, EE.
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Figure B-71. Strains on housing test assembly 1E; locations F, FF.
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Assy 1A Assy 1B Assy 1C

Proof Tests 1 1 Failed at 9910

Cyclic Tests 10 10 0
Assy 1D Assy 1E Assy 1F

Proof Tests 1 Test Terminated 1

. at 7000 psi

Cyclic Tests 10 without implosion 10
Assy 3A Assy 3B Assy 4A

Proof Tests 1 1 1

Cyclic Tests ' 50 50 50

1. Proof testing: Pressurize to 10,000 psi, hold pressure for 15 minutes.
2. Cycling Test: Pressurize to 9000 psi, hold pressure for 1 minute.

Table B-2. Summary of test performed on 12-inch-diameter
ceramic test housings during evaluation of joint ring stiffeners.
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Ceramic Cylinder, 12 in OD X 18 in L X 0.412 in, 94% alumina 35.0 1lbs

End Caps for Cylinder (pair)

Titanium Mod 0O DWG.55910-0119736 4.0 1lbs
Titanium Mod 1 DWG.55910-0125186 5.1 1lbs
Aluminum Mod 0 DWG.55910-0119736 1.44 1lbs
Aluminum Mod 1 DWG.55910-0125186 3.28 1lbs
Joint Ring Stiffener, Titanium
DWG. 55910-0119738 6.30 lbs
DWG. 55910-0123943 6.00 lbs
DWG. 55910-0121604 5.13 lbs
Joint Ring Stiffener, Aluminum
DWG. 55910-0124007 5.67 lbs
DWG. 55910-0124008 5.06 lbs
DWG. 55910-0121605 4.62 lbs
Jacket, Polyurethane, DWG.55910-0120000 9.8 1lbs
Hemisphere*, Titanium Type 1 DWG.55910-0119737 12.5 1lbs
Titanium Type 2 DWG.55910-SK9402-064 24.0 1lbs
Hemisphere, Ceramic
Mod 1, DWG. 55910-0119913 6.57 1lbs
Mod 2, DWG. 55910-0120247 8.21 lbs
Mod 3, DWG. 55910-0121707 5.40 lbs
Mod 4, DWG. 55910-0121710 8.80 1lbs
Mod S5, DWG. 55910-0121837 7.88 1lbs

End Ring for ceramic hemisphere Mod 0
Titanium DWG.55910-0119915 2.22 lbs
End Ring for ceramic hemisphere Mod 1

Titanium DWG.55910-0125666 4.10 lbs
Wedge Clamp Band, Aluminum DWG.55910-0119740 1.5 1bs
Connector Inserts, Titanium (each) DWG.55910-0120248 0.6 1lbs
Weight/Displacenment

Cylinder with end caps, Mod 0 Titanium 0.512

Cylinder with end caps, Mod 1 Titanium 0.528

Cylinder with end caps, Mod 0 Aluminum 0.48

Cylinder with end caps, Mod 1 Aluminum 0.49

Cylinder with end caps, Mod 1 Titanium

and two Titanium hemispheres Type 1 0.62

Cylinder with end caps, Mod 1 Titanium;

two ceramic hemispheres, Mod 1;
with end rings, Mod 1 Titanium;
Aluminum clamp bands and connector inserts 0.60

*The critical buckling pressure of Titanium hemispheres Type 1 is
12,5cC psi, and of Type 2 is 23,000 psi

Table B-3. Weights of structural components in 12-inch-diameter ceramic test housings.
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The Ceramic is Coors AD 94 (947 Alumina)

Structural Performance: Sustained external loading to 10,000 psi

Data: All readings are in microinches/inch
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Table B-15. Strains on aluminum ring stiffener DWG 0124007 in housing test assembiy 1D.
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CERAMIC BULKHEADS FOR
12-INCH-DIAMETER CERAMIC
CYLINDRICAL HOUSINGS
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APPENDIX C: HEMISPHERICAL
CERAMIC BULKHEADS FOR
12-INCH-DIAMETER CERAMIC
CYLINDRICAL HOUSINGS

INTRODUCTION

In prior studies of ceramic housings for underwater
vehicles, no effort was devoted to the design and
evaluation of ceramic hemispherical bulkheads.
Instead, all effort focused on the ceramic cylinders
that provide the bulk of the buoyancy in an under-
water housing. it was felt that if it could be demon-
strated that ceramic cylinders could be designed
reliably, fabricated economically, and tested suc-
cessfully, more interest would be generated in the
Navy to fund further investigations into application
of ceramic housings to underwater vehicles.

The preliminary investigations into the structural
performance of ceramic cylindrical housings con-
ducted with 6-inch-OD scale-model monocoque
cylinders radially supported at the ends with tita-
nium hemispherical bulkheads were very promis-
ing. A weight-to-displacement (W/D) of 0.64 was
attained by housings with a design depth of 20,000
feet which provided them with the capability to
carry twice as heavy a payload as housings made
of titanium. If the titanium hemispherical bulkheads
could be successfully replaced with ceramic butk-
heads, not only the overall buoyancy, but also the
elastic stability of the housing would improve sig-
nificantiy.

Because of the importance that ceramic hemi-
spherical bulkheads have in the ceramic housing
assembly, a major portion of this investigation was
devoted to their design, fabrication, and exper-
imental evaluation.

OBJECTIVES

The exploratory investigation into the feasibility of
replacing 12-inch-OD hemispherical titanium bulk-
heads with ceramic bulkheads focused on the fol-
lowing objectives:

1. Design and evaluation of ceramic hemi-
spheres with single or multiple penetrations

that wili not act as crack initiators when the
hemisphere is, after proof testing to

10,000 psi, pressure cycled repeatedly to
9,000-psi design pressure. The penetrations
are to be adequately sized to handle 1.5-inch-
diameter electrical bulkhead penetrators.

2. Design and evaluation of metallic inserts for

penetrations in ceramic hemispheres to
accommodate threaded, commercially avail-
able electrical or hydraulic bulkhead penetra-
tors. These inserts are not to initiate cracks
on the ceramic shell in contact with the inserts
when the hemisphere is, after proof testing to
10,000 psi, pressure cycled repeatedly to
9,000-psi design pressure.

3. Design and evaluation of a metallic end ring

for the equatorial bearing surface of the hemi-
sphere. The end ring is to serve three func-
tions: (1) as an end cap enclosing the
equatorial bearing surface of the hemisphere,
(2) as a radia! support for the cylinder end,
and (3) as an attachment point for the spilit
wedge band fastening the hemisphere to the
cylinder.

APPROACH

Five 12-inch-OD bulkheads with penetrations were
designed and fabricated from 94-percent alumina-
ceramic (figure C-1). After fitting out with titanium
penetration inserts and joint end rings, they were
instrumented on their interior surfaces with electric
resistance strain gages (figure C-2), mated with a
single monocoque ceramic cylinder to form a
12-inch cylindrical housing (table C-1) and subse-
quently subjected to external pressure testing
(tables C-2 and C-3).

All pressure housings satisfactorily withstood a
proof test to 10,000 psi, followed by many pressur-
izations to 9,000-psi design pressure. The com-
pressive stresses in all hemispheres, except for
the Mod 3 hemisphere, did not exceed the design
stress of —~150,000 psi at 9,000-psi design pres-
sure (figure C-3). in Mod 3, while the nominal
membrane stresses were below —-150,000 psi, the
peak hoop stress around the unreinforced polar
opening approached —300,000 psi. Some spalling
took place on the bearing surfaces of hemispheres
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and cylinders after repeated pressure cycling. The
causes of early spalling were identified and recom-
mendations were formulated to eliminate them in
future designs.

DESIGN DETAILS

Hemispheres

The nominal thickness of the hemisphere was
selected to equal one-half of the cylinder thick-
ness. This equalized the hoop membrane stresses
in both ceramic shells, and, as a result, it equalized
also their radial deflections. Because of this, the
bending stresses at the joint between the hemi-
sphere and the cylinder were minimized.

The nominal membrane stressss in the spherical
shell with 0.200-inch thickness were calculated to
be 152,475 psi at 10,000-psi proof pressure, just
slightly above the design stress of —150,000 psi
selected for 94-percent alumina-ceramic pressure
housings. At this design stress leve!, the nominal
safety factor (SF) is 2, based on minimum material
strength of 94-percent alumina ceramic obtained
by uniaxial testing of cylindrical test specimens.
The real SF is in excess of 2.4 as hydrostatic test-
ing of 94-percent alumina-ceramic spheres to cata-
strophic failure by other investigators has
demonstrated compressive strengths in excess of
360,000 psi.

Peak stresses in the spheres were caiculated to
increase by approximately 100 percent above the
nominal membrane stresses at penetrations in a
shell of constant thickness. To reduce the magni-
tude of peak stresses, steps were taken to
increase the shell thickness around penetrations
by 100 percent. There are several approaches to
achieve this, and hemispheres Mod 1, 2, 3, and 4
demonstrate these approaches.

Diameters of penetrations in hemispheres varied
from 2 to 3 inches (i.e., 0.15<d/D,<0.25). The
2-inch-diameter penetration was the smallest hole
capable of accommodating standard, commercially
availabie 1.5-inch-diameter electrical bulkhead
penetrators threaded into metallic penetration
inserts. The other-sized holes were created by
enlarging the 2-inch-diameter holes after the edges

of the smaller holes were damaged either during
assembly of the penetrators, or during pressure
testing.

Single Penetrations

Single penetrations were incorporated into the
spherical shell using the following design proce-
dures:

Procedure 1. The shell is reinforced locally around
the penetration to reduce the peak membrane
stress at this location to —150,000 psi at design
pressure. For a single polar penetration, the rein-
forcement took the shape of a boss centered at the
pole of the hemisphere (figure C-4). The nominal
thickness of the shell at the edge of the penetra-
tion increased from 0.2 to 0.5 inch in order to
reduce the hoop stress around the penetration
from -300,000 psi to <—150,000 psi design stress
value.

Several iterations of boss configuration had to be
performed to minimize bending stresses in the
transition zone between the massive reinforcement
around the polar penetration and the thin spherical
shell. The resulting reinforcement around the polar
penetration was well proportioned; the hoop stress
on the interior surface was only —35,000 psi while
the radial stress was positive, but less than

5,000 psi. At all other locations on the interior sur-
face, the compressive stresses were fairly uniform
and in the —100,000 to —130,000 psi range. Some
bending between the thick polar reinforcement
around the penetration and the thin shell took
place, as shown by the reduced compressive
stress on the interior surface at this location.

Procedure 2. The shell thickness is increased
gradually by approximately 100 percent from areas
without penetrations to where penetrations are
located. For hemispheres with a single polar
penetration (figure C-27), the shell is increased in
thickness from the calculated nominal vaiue at the
equator to its maximum thickness at the pole.

For the 12-inch-diameter hemisphere Mod 2 with a
single polar penetration, the thickness of the shell
was increased from 0.205 inch at the equator to
0.44 inch at the edge of the penetration. Because
of the gradual increase in thickness, bending
moments are not introduced into the shell near the
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penetration, as is the case with Mod 1 hemi-
spheres. Also, because of the increase in shell
thickness, the magnitude of hoop membrane
stresses over the whole shell area is less than
-100,000 psi at 9,000-psi design pressure. Only at
the equator does the meridional (axial) stress
increase to —121,000 psi; still far below the speci-
fied —150,000-psi design stress level at 9,000-psi
design pressure.

Procedure 3. The nominal shell thickness based
on —150,000-psi design stress is kept constant
everywhere on the hemisphere regardiess of
where the penetrations are located (figure C-42).
Since there is no reinforcement around a single
penetration, or multiple penetrations, the compres-
sive stresses around the edge of the penetration
increase by 100 percent from the nominal stress
value of —150,000 psi. This is a very high stress
level for 94-percent alumina ceramic as it reduces
the actual SF to less than 1.2.

This is not a structurally desirable approach for
incorporating penetrations in the ceramic hemi-
spheres as the resuiting peak stresses around
penetrations are too close to the ultimate strength
of the ceramic and, thus, are incompatible with
prudent design criteria. Still, hemisphere Mod 3
with constant shell thickness incorporating a
penetration was designed, fabricated, and pres-
sure cycled in this program to provide a structural
performance baseline for other hemispheres with
reinforcements around penetrations.

The Mod 3 hemisphere designed by this approach
on the basis of —150,000-psi design stress has
only a nominal shell thickness of 0.2 inch. The
Mod 3 hemisphere represents the lightest design
for a 12-inch-diameter hemisphere with a single
polar penetration. Although it has been shown sub-
sequently that the Mod 3 hemisphere is capable of
successfully withstanding a proof test to 10,000 psi
and at least 34 pressure cycles to 9,000-psi design
pressure, this design is not recommended for ser-
vice where a fatigue life in excess of 100 cycles is
expected. Maximum hoop stress of —190,000 psi
was recorded near the penetration at design pres-
sure.

The picture changes dramatically, however, when
penetrations are not incorporated into the hemi-
sphere. In that case, the maximum hoop stress at
design pressure does not exceed the —150,000-psi
design stress at 9,000-psi design pressure. The
resulting ceramic hemispherical bulkhead assem-
bly with Mod 1 end rings has a 0.43 W/D ratio, a
significant improvement over the 0.7 W/D ratio of a
titanium hemispherical bulkhead with a critical
pressure of 13,500 psi. Because of the acceptable
stress levels and outstanding W/D ratio, ceramic
hemispherical bulkheads with t/Dy=0.017 uniform
shell thickness are considered to represent a cost-
effective replacement for titanium hemispherical
bulkheads without penetrations.

Multiple Penetrations

Multiple penetrations were incorporated into the
spherical shell using the same design procedures
as those for single penetrations:

Procedure 1. The shell of the hemisphere with mul-
tiple penetrations is thickened only locally around
the penetrations on the circumference of the hemi-
sphere at a 45-degree latitude (figure C-54). Since
it is time-consuming, difficult, and, therefore,
expensive to carve out circular pads around sev-
eral individual penetrations that would reinforce
their edges, a continuous band of thicker shell
material was substituted. The replacement of
many reinforcement pads around penetrations with
a single reinforcement band girding the hemi-
sphere between 30° and 60° latitudes had also a
beneficial effect on the structural performance of
the hemisphere by decreasing local deformations
of the sheil known to initiate buckling at a lower
pressure. The replacement of many pads with a
single band added weight to the hemisphere. How-
ever, the associated reduction in fabrication cost
and improvement in structural performance made
this a very cost-effective design change.

The Mod 4 hemispherical shell incorporating this
design approach was 100-percent thicker around
the penetrations than at the equator. As a result of
this variation in shell thickness, there are bending
movements generated in the transition zones
between the thick- and thin-shell areas. Still, the
maximum compressive stress at 9,000-psi design
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pressure did not exceed 141,000 psi on the interior
surface, and there was a total absence of tensile
stresses.

Procedure 2. The shell of the hemisphere with mul-
tiple penetrations is increased in thickness from a
nominal value at the pole to its maximum value at
the equator. The reason for increasing the shell
thickness at the equator instead of at the pole, as it
was done with design Procedure 2 for the Mod 2
hemisphere with a single polar penetration, is that
one cannot locate many large penetrations in the
polar region as, otherwise, the separation between
their edges would not be adequate.

To minimize the increase in shell thickness and
weight, while at the same time providing adequate
reinforcement, penetrations must be located as
close as it is structurally feasible to the equator,
where the shell is the thickest. An acceptable loca-
tion is at 30° latitude, since at that location the dis-
tance between the edge of the penetration and the
equator still exceeds the minimum structurally
acceptable spacing between the edges of adjacent
penetrations. A conservative value for this spacing
is the diameter of the penetration. To keep the
peak compressive stresses around the penetra-
tions below —150,000 psi, the minimum shell thick-
ness at any location around the penetration’s
circumference will have to exceed by 100 percent
the nominal shell thickness, calculated on the
basis of —150,000-psi design stress under proof-
test pressure of 10,000 psi.

One additional feature of thickening the sheil at the
equator and not at the pole is the decrease by at
least 50 percent of the axial bearing stress on the
plane-equatorial bearing surface. Since the cyclic
fatigue life of the ceramic component is inversely
related to the axial stress on the ceramic bearing
surface, reducing its magnitude by 50 percent
increases the cyclic fatigue life by a factor of 10, or
more.

The design of Mod 4 did not follow this procedure
because the design requirement called for not only
four penetrations around the circumference of the
hemisphere at 45° latitude, but also for a single
polar penetration. The only approach to providing
all of these penetrations with material thickness

that exceeds the nominal shell values by 100 per-
cent is to increase the nominal shell thickness
either (1) by 100 percent over the whole hemi-
sphere, or (2) by about 200 percent at the pole,
and then decreasing it toward the nominal si.all
thickness at the edge.

Neither approach was chosen, as there was insuf-
ficient funding to have another hemisphere fabri-
cated for testing at this time. The approach chosen
instead was to modify the already tested hemi-
sphere Mod 2 in which the shell thickness was
increased from the nominal 0.200-inch value at the
equator to the maximum 0.445-inch value at the
pole. Four penetrations were cored into the Mod 2
hemisphere at the 45° latitude (figure C-66). The
thickness of the shell around these four penetra-
tions varied from 0.27 to 0.35 inch, while around
the central penetrations it was 0.42 inch. Because
of this arrangement, the stresses around the
penetrations varied from approximately —150,000
psi at the polar penetration to —220,000 psi at the
penetrations on the 45° latitude. Thus, the maxi-
mum stress around the four penetrations was
higher than the design stress of —150,000 psi, but
probably acceptable as it still provided a nominal
SF of 1.36 for 94-percent alumina ceramic. When
one takes into account the increase in compres-
sive strength under biaxial loading that exists in
ceramic hemispheres, the real SF probably
increases to 1.5, making this hemisphere design
acceptable.

Connector Inserts for Penetrations

Standard commercial, high pressure, electrical
bulkhead penetrators with steel bodies are not well
suited for direct installation in the ceramic shell
without custom made inserts. Such inserts are
required to eliminate point contact between the
threaded steel body of the bulkhead penetrator
and the ceramic surfaces and to provide a
threaded hole for seating the penetrator.

The original concept of the connector insert was a
flanged tube threaded on the inside to receive a
threaded electrical bulkhead penetrator, and
threaded on the outside to engage with a nut. The
exterior threads did not extend the whole length of
the tube; the exterior of the tube contacting the
ceramic shell was radially smooth and its diameter




FEATURED RESEARCH

was only 0.002 to 0.004 inch smaller than the
diameter of the penetrations.

Sealing was originally accomplished with an axially
compressed O-ring seal heid captive by an O-ring
groove in the flanged head of the tube. Both Mod 1
and Mod 2 hemispheres were equipped with such
connector inserts (figures C-6 and C-29). After a
single proof test to 10,000 psi, however, followed
by 34 pressure cycles to 9,000 psi, a crack was
detected on the exterior surface of the Mod 2
hemisphere directly beneath the O-ring groove in
the flange of the connector insert. Nc cracks were
detected under the connector insert in Mod 1 hemi-
spheres.

Following the inspection, the polar penetration in
the Mod 2 hemisphere was enlarged to eliminate
the circular crack paralleling the circumference of
the penetration. When completed, the diameter of
the polar penetration was 3 inches. In addition to
enlarging the polar penetration, four equally
spaced 2-inch-diameter hcles were cored out from
the hemispheres at 45° latitude. The reworked
sphere was returned for further pressure cycling as
a Mod 5 sphere configuration after being equipped
with modified connector inserts.

The modification to connector inserts consisted of
modifying the flange on the connector insert to
eliminate any axial bearing contact between the
metallic flange on the connector insert and the
ceramic shell. This was achieved by interposing a
laminated phenolic bearing washer between the
metallic flange and the ceramic surface on the
sphere (figures C-7 and C-30).

The phenolic washers served two functions; they
acted (1) as a vertically compliant, but radially
restrained, gasket between the fla;ige of the metal-
lic connector insert and the exterior surface of the
sphere, and (2) as a spacer between the flange
and the sphere controlling the extent to which the
O-ring seal beneath the flange was axially com-
pressed. The laminated, cloth-reinforced phenolic
material was chosen because of its high compres-
sive strength and low creep under load. In all
cases, the curvature of the lower surface on the
washer was machined to match the spherical
curvature of the ceramic sphere while the upper

surface on the washer was plane, matching that of
the flange or: the connector insert. The axial com-
pressive loading on the laminated phenolic bearing
gasket varied from one connector insert design to
another. The highest loading at 10,000-psi proof
pressure applied to the bearing gasket was

12,400 psi on Mod 1 spheres, and the lowest value
was 7,400 psi on Mod 3 and 4 spheres.

The modified connector insert with the phenolic
washer performed satistactorily; no cracking was
observed on any of the ceramic hemispheres on
the exterior surface of the spheres after repeated
pressure cycling. However, a crack-free cyclic
fatigue life has not been established experimentally
for a connector insert resting upor: a laminated
phenolic washer since pressure cycling of ceramic
housings did not continue beyond 121 pressuriza-
tions to design depth. it appears that a connector
insert resting upon a laminated phenolic washer
will not initiate cracks on the surface of the sphere
in less than 1,000 pressurizations to design pres-
sure,

Although the above connector insert performed
satistactorily, it has one drawback that should be
eliminated in future designs. The present connec-
tor insert design requires a very small radial clear-
ance between the insert body and the edge of the
2enetration in the ceramic shell for the proper per-
formance of the O-ring seal as, otherwise, the
O-ring will squeeze through under pressure.
Because of the snug fit, the ceramic shell contacts
the metallic insert when pressurized and, as a
result, generates some compressive bearing stress
in the ceramic shell edge that, after many repzated
pressurizations, may initiate cracks in it.

This shortcoming of the penetrator insert design
may be eliminated by decreasing the interior and
exterior diameters of the phenolic pad until the
internal diameter contacts the connector body. The
O-ring is placed now in the space between the
exterior diameter of the pad and the lip on the con-
nector insert flange Since the O-ring is trapped
betwsen the exterior diameter of the pad, insert
flange, and the surface of the shell, the radial
clearance between the body of the insert and the

C-10
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penetration insert can be increased to 0.005-
0.010 inch eliminating any radial bearing stress on
the ceramic shell at that location.

End Ring

The end ring is designed to perform three func-
tions. It serves as (1) an end cap for the equatorial
bearing surface on the hemispheres, (2) a flange
providing radial support to the end of the adjoining

cylinder, and (3) a component of a mechanical joint

for fastening the hemisphere to the cylinder. The
Mod 0 end ring designed for the 12-inch-diameter
hemisphere performed all three functions satisfac-
torily. None of the five hemispheres equipped with
these end rings failed catastrophically during the
test program.

During pressure cycling, however, it became
apparent that the Mod 0 end cap is not providing
adequate bearing support to the hemisphere, as
evidenced by appearance of spalling on the exte-
rior surface of the hemisphere after approximately

50 pressure cycles to design pressure. This finding

was corroborated in another program by the test-
ing of 20-inch-diameter hemispheres also
equipped with Mod 0 end rings (Reference 1). In
that case, spalls were visible after 100 pressure
cycles, and catastrophic implosion occurred on the
108th cycle.

The inability to provide adequate support for the
equatorial bearing surface on the hemisphere by a
Mod 0 end joint was corrected by extending the

length of the flanges on the end ring. The design of

improved Mod 1 end rings is discussed in detail in
appendix D. Due to financial and scheduling
constraints, Mod 1 end rings for 12-inch-OD hemi-
spheres were neither fabricated, nor evaluated in
this program.

TEST RESULTS

The 12-inch-diameter hemispheres did not fail dur-
ing proof testing to 10,000 psi, or cyclic testing to
9,000-psi design pressure.

Penetrations in the hemispheres did not initiate
cracking even though the peak compressive
stresses at the edges of the penetrations in the

Mod 3 hemisphere approach 300,000 psi during
proof testing.

The connector inserts did not initiate any cracks in
the ceramic shell when high-pressure-laminated
phenolic washers served as axial bearing gaskets
between the metallic flange of the insert and the
ceramic shell.

The Mod 0 end ring did not provide adequate sup-
port to the equatorial bearing surface on the hemi-
sphere, resulting in spalling of this surface after
only about 50 pressure cycies to design pressure.
Catastrophic failure is expected after 100 cycles.
The redesigned Mod 1 end ring described in
appendix D has eliminated early spalling and, for
this reason, will be used in all future hemisphere
assemblies.

CONCLUSIONS

-t
.

Ceramic hemispheres have been successfully
designed and fabricated in 94-percent alu-
mina incorporating single, or multipie penetra-
tions equipped with metallic inserts capable of
mating with threaded electrical, or hydraulic,
bulkhead penetrators.

When properly reinforced with additional
ceramic material around penetrations, the
peak compressive stresses in ceramic hemi-
spheres with nominal 1=0.017D, shell thick-
ness can be reduced below —150,000-psi
design stress level and the tensile stresses
completely eliminated when pressurized
externally to 9,000-psi design pressure.

3. The cyclic fatigue life of ceramic hemispheres
equipped with Mod O end rings, although ade-
quate for the purposes of this program, does
not meet the operational needs of typical
deep submergence underwater vehicles that
require as a minimum a cyclic fatigue life of
500 dives to design depth. This shortcoming
in performance can be resolved by redesign-
ing (1) the shape of the equatorial bearing
surfaces on the hemispnere and (2) the size
of the annular seat in the titanium end ring, or
both.
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The W/D ratio of ceramic hemispherical bulk-
heads with 9,000-psi design depth varies from
0.5 for complete hemisphere assemblies with-
out penetration, to 0.73 for hemispheres with
four penetrations (table C-4). This represents
a payload increase of approximately 58 per-
cent over titanium hemispheres with the same
design depth and number of penetrations.

Besides an increase in payload capability, the
ceramic hemispheres also provide stiffer
radial support to the ends of monocoque
ceramic cylinders resulting in higher critical
pressure of the whole housing assembly.

RECOMMENDATIONS

1.

Ceramic hemispherical bulkheads are to be
preferred over titanium hemispherical bulk-
heads, as they increase both the payload
capability and the critical pressure of the cylin-
drical housing assembly.

All ceramic hemispherical bulkheads should
terminate at the equator with a cylindrical skirt
whose thickness matches that of the adjoining
cylinder. This reduces the axial stress on the
ceramic bearing surface and, as a result of
the bearing stress reduction, the cyclic fatigue
life of the ceramic bearing surface will
increase significantly.

The length of cylindrical skirts should match
or exceed the depth of the annular seat on the
Naval Ocean Systems Center (NOSC)*

Mod 1 joint ring which is bonded to the cylin-
drical skirt. The depth of the seat should be
<3.4t of the skirt thickness. With such support
to the equatorial surfaces on ceramic hemi-

*NOSC is now the Naval Command, Control and
Ocean Surveillance Center (NCCOSC) RDT&E
Division (NRaD).
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spheres their cyclic fatigue life exceeds 500
cycles to design depth.

The membrane design stress shouid not
exceed —150,000 psi at design pressure for
ceramic hemispheres fabricated from
94-percent alumina. For 96-percent alumina,
the membrane design stress can increase to
—160,000 psi at design depth.

For bulkheads without penetrations, one
should select a hemisphere with uniform wall
thickness, except at the equator where it tran-
sitions into a cylindrical skirt whose thickness
matches that of the adjoining cylinder.

For bulkheads with a single polar penetration,
the recommended design is a ceramic hemi-
sphere of constant thickness, except for the
boss at the pole and the cylindrical skirt at the
equator where the shell doubles in thickness
to match that of the adjoining cylinder.

For bulkheads with multiple penetrations
equally spaced around their circumferences at
45° latitude, the recommended shape is a
ceramic hemisphere of constant thickness
except around the penetrations and the cyiin-
drical skirt at the equator where the shell
doubles in thickness.

For bulkheads with multiple penetrations
located both at the pole and around the
circumference at 45° elevation, the recom-
mended design is a ceramic hemisphere
whose thickness uniformly decreases from
the pole toward the equator that terminates in
a cylindrical skirt whose thickness matches
that of the cylinder. In this design, the thick-
ness of the sheli at the pole is based on a
membrane stress of —75,000 psi at design
depth. Because of the uniformly decreasing
wall thickness from the pole to the equator,
the peak stresses around the penetrations at
45° latitude will increase above —150,000 psi,
but not sufficiently to be a source of concern.
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Figure C-2. Location of strain gages on ceramic hemispheres.
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Figure C-5. Exterior view of Mod 1 hemisphere.
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interior view.

Figure C-11. Ceramic bulkhead assembly Mod 1
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: L -
Figure. C-15. Instrumented ceramic housing test assembly 2A prior to pressure testing.
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Figure. C-16. Displacement of the ceramic shell on Mod 1 ceramic hemisphere under 9,000-psi external design
pressure calculated with a finite-element computer program.
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Figure. C-17. Stains on test assembly 2A; locations A, AA, AAA.
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Figure. C-18. Strains on test assembly 2A; locations B, BB, B8B.
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Figure. C-19. Strains on test assembly 2A; locations C, D, E, F, G, H, |, J in hoop orientation.
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Figure. C-20. Strains on test assembly 2A; locations C, D, E, F, G, H, |, J in axial orientation.
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Figure. C-21. Stress on test assembly 2A; locations A, AA, AAA.
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Figure. C-22. Stress on test assembly 2A; locatior
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Figure. C-23. Stress on test assembly 2A; locations C, D, E, F, G, H, 1, J in hoop orientating.
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Figure. C-24. Stress on test assembly 2A; locations C, D, E, F, G, H, |, J in axial orientation.
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Figure. C-25. Stress on test assembly 2A; location KK at polar penetration in Mod 1 hemisphere.
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Figure. C-26. Distribution of stress in Mod 1 hemisphere.
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exterior view.

Figure C-31. Ceramic bulkhead assembly Mod 2
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Figure. C-35. Strains on test assembly 2B; locations B, C, D, E, F, G, H, 1, J, Kin hoop orientation.
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Figure. C-36. Strains on test assembly 2B; locations B, C, D, E, F, G, H, |, J, K in axial orientation.

C-41



E

HEMISPHERE MOD 2
ALL LOCATIONS

HOOP STRESSES

. PSI
s EE88838BBE

e ' i

1 2
0 0 00 o0 3l20 150
COMPRESSIVE STRESS, PSI X 10

Figure. C-37. Stresses on test assembly 2B; locations B, C, D, E, F, G, H, |, J, K in hoop orientation.
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Figure. C-38. Stresses on test assembly 28B; locations B, C, D, E, F, G, H, |, J, K in axial orientation.
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Figure. C-39. Stresses on test assembly 28; location K at polar penetration in Mod 2 hemisphere.
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Figure. C-48. Strains on test assembly 2C; locations A, B, C, D, E in hoop orientation.
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Figure. C-49. Strains on test assembly 2C; locations A, B, C, D, E in axial ofientation.
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Figure. C-50. Stresses on test assembly 2C; locations A, B, C, D, E in hoop orientation.
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Figure. C-51. Stresses on test assembly 2C; locations A, B, C, D, E in axial orientation.
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Figure. C-52. Stress on test assembly 2C; location E at polar penetration in Mod 3 hemisphere.
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Figure. C-53. Distribution of stresses on Mod 3 hemisphere at 9000psi pressure.
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FEATURED RESEARCH
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Figure. C-62. Stresses at apex of ceramic hemisphere Mod 4.
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Figure. C-63. Stresses at penetration in hemisphere Mod 4.
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Figure. C-65. Ceramic housing test assembly 2D incorporating

both Mod 4 and Mod 3 ceramic bulkheads.

Figure. C-64. Distribution of stresses on ceramic hemisphere Mod 4.
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Figure. C-71. Stress on Mod 5 ceramic hemisphere between penetrations.

Figure C-72. Ceramic housing test assembly 2E during placement
into the pressure vessel for external pressure testing.
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FEATURED RESEARCH

Tabie C-4. Weights of structural components in 12-inch-diameter ceramic housing test assembiies.

Ceramic Cylinder 12 in OD X 18 in L X 0.412 in, 94% alumina 35.0 1lbs
End Caps for Cylinder (pair)
Titanium MOD 0 DWG 55910-0119736 4.0 1lbs
Titanium MOD 1 DWG 55910-0125186 5.2 1lbs
Aluminum MOD 0 DWG 55910-0119736 1.44 lbs
Aluminum MOD 1 DWG 55910-0125186 3.28 1bs
Hemisphere, Titanium Type 1 DWG 55910-0119737 12.5 1bs
Henisphere, Ceramic
MOD 1 DWG 55910-0119913 6.57 1lbs
MOD 2 DWG 55910-0120247 8.21 lbs
MOD 3 DWG 55910-0121710 5.40 lbs
MOD 4 DWG 55910-0121710 8.80 lbs
MOD S DWG 55910-0121837 7.88 lbs
End Ring for ceramic hemisphere MOD 0
Titanium DWG 55910-0119915 2.22 1bs
End Ring for ceramic hemisphere MOD 1
Titanium DWG 55910-0125666 4.10 1lbs
Wedge Clamp Band, Aluminum DWG 55910-0119740 1.50 1lbs
Connector Inserts, Titanium (each) DWG 55910-0120248 0.60 1bs
Weight/Displacement
Cylinder with end caps, MOD 0 Titanium 0.512
Cylinder with end caps, MOD 1 Titanium 0.526
Cylinder with end caps, MOD 6 Aluminum 0.48
Cylinder with end caps, MOD 1 Aluminum 0.50
Cylinder with end caps, MOD 1 titanium
and two Titanium hemispheres Type 1 0.62
Cylinder with end caps, MOD 1 Titanium;
two ceramic hemispheres, MOD 1;
with ends rings, MOD 1 Titanium;
Alunminum clamp bands and connector inserts 0.60

*The critical buckling pressure of Titanium hemisphere Type 1 is

12,500 psi, and of Ceramic MOD 1 is 23,000 psi
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FEATURED RESEARCH

Table C-5. Strains on the titanium end ring bonded to the 12-inch-diameter ceramic hemisphere
Mod 1 DWG 55910-0119913.

Gage Locations

Pressure R AR ARR
PSID Hoop Rxial Hoop fxial Hoop Axial

0 (1] (1} 4] 0 0 0
1000 =75 66 - =58 137 ~96 112
2000 -280 16S -2680 250 -330 222
3000 -525 270 -476 332 -592 342
4000 -776 38S =732 470 -795 420
S000 -1050 S00 -390 575 -1063 565
6000 ~-1290 670 -1187 727 -1277 700
7000 -1550 800 ~1438 860 -1530 820
8000 -1800 942 -1677 993 -1773 957

9000 =2070 1065 -1936 1116 -2023 1080
10000 ~2320 1192 -2172 1240 =-2270 1207

Note: Rl]l strain readings are in microinches per inch

C-75




-_—

Yyour ad sayoutouote ur as.e sbutpeas uteas TTY 830N

-t

174 Lo Zrse- 00¥e- 009%2- orse- Q0Ee- ovie- 0see- cese- eyce- 10E2- B81E2-
deee- 1622~ s91e- aree- 8be- 0802~ ESKZ- 0s02- gvic- a102- cioe- £802-
0661~ rroe- 0E61- 8602~ 9961 €981- <sie- cEBT- ZE61- 9641~ 021~ S901-
GELI- 281~ 2891~ 9e01- 6991~ 0E91- 4581~ 2091~ 0891~ E6ST- Vi 445 €SS~
00S1- SESI- Shyi- 8e8S1- B8BE1 - Ziri- 0481~ S8El- 0BET- ZSET- ssit- riri-
oeel- 1621~ ozt~ EEET~ o1t l~- %811~ 121~ €911~ oEl 1~ ESTI- 808~ 9021~
6001~ 8z01- 96~ 6401~ 699 6S6- o¥6- S¥6- 0se- Oor6- 029~ S66-

“ERREE3RERE

oS-~ 292~ 122~ 02e- €29- 022~ €69~ 0€2- 969~ 029~ ElE- 122~ 2
667~ o1s- Ser-~ 2SS~ v8E- 16r- sy~ 289y~ 99€- 659~ 96- rer- O
952 s92- €e2- re2- 68— 222- art- 92~ g¢- €22~ It 8e2-
o 0 0 o o o o 0 0 0 i} 0
ety dooyy ey dooyy ey dooy ey dooyy Terqy  dooy [ery  dooy CISd)
3 a b aaa aa | aunssaig

suotjeco] abeg

"1 190YS ‘1661 10-0165S DMQ | POW aseydsiuey JwBIEd 18jewWeIP-youl-g| Uo sufels °g-O 6iqel




yout Jad sayoutosote uy sJe sbuipeas uteays [Ty 0N

¥2s- vS- Qle2-  Oee2-  OvSi- 0sez-  Ogl2- ¥Sez- 0992~ 2652-  E6S2~ ¢082- 00001
22y~ 8- otiz-  Of12- yeET- 2212~ OE61~-  9252-  ¥6EC- yEE2-  EEE2- 6522- 0006
oy o21- ¥981-  2681- weli- v061- 2221~ 2822-  ¥EI2-  0B02- 602~ ¥102- 0008
riy- 2ri- Z2S1-  ¥991- B60I- DB91-  9ISI~  0DOO2- 081~  O28i-  Oi6l- 9821~ 0002
Yor- 221- . O0BEl-  25p1- 96~ ori- ¥IET-  OFei- ri91- ¥2S1-  ¥SSI- 60S1- 0009
91y- 202- 0211-  2e21- 818- os2t- #211- D09¥I-  BSEI-  B2ET-  S62I- gs21l-  000S
226~ 812~ 9%€6- 066~ 0s9- 0001- 268~ 0911-  8201- 0901~ €01~ 2001-  0O0O¥
o2e- 292~ 6s9- 9g9- osr- D69- 2rs- rve- 022~ 092- S22- ESe- 0O00E N
re2- vi2- asy- 2ey- 2ie- o6r- SEY- 22 2€s- 216~ ris- 86— 0002 S
ve- ose- eE2-~ oz2- o81- - 22- 8E2- 21e- 082~ va2- 652~ sge- 0001
0 o 0 0 0 1] o 1} i} 0 0 o 0

ey dooy ey dooyy 1LY dooy eIy dooyy ey dooy ey dooy CISd)

b] £ 1 H 9 4 ainssa.g

suotjescon] abeg

-2 1964S ‘E1661 1001655 DMQ | POW 8Jeydsiwey JUIRIEO JBjeWeIP-4OUl-Z| UO SURAS '9-D Biqel




FEATURED RESEARCH

Table C-8. Strains on 12-inch-diameter ceramic hemisphere Mod 1 DWG 55910-0118913, Sheet 3.

Pressure KK
(PSI) Hoop Rxial

g (1} (4]

1000 64 20
2000 -90 116
3000 -180 1S0
4000 -312 126
S000 -420 154
6000 =510 142
7000 -600 198
8000 -712 260
9000 -800 250
10000 -8682 264

Note: RAll strain readings are in microinches per inch

Table C-7. Strains on ceramic cylinder assembly 2A gage locations.

Pressure L LL
<(PSI) Hoop Axial Hoop Axial

1] 0 o 1] 0
1000 -242 182 -344 -]
2000 ~-580 -44 -580 0
3000 ~-794 -134 -864 —44
4000 -1066 -318 ~1196 -116
S000 -1350 -390 ~1240 -242
6000 -1630 -666 ~1684 -310
7000 -1910 -920 ~1924 -386
8000 -2190 ~1190 -22680 474
3000 -2472 -1960 -2510 -S00

10000 ~2744 ~2548 ~2800 -626
Note: All strain readings are in microinches per inch
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Table C-8. Strains on titanium end bell gage location.

Gage Location
Pressure M
PSD) Hoop Axial
0 0 . 0
1000 -442 =354
2000 -6830 ~714

3000 -1200 -1074
4000 ~15S08 -1614
S000 -2050 -1950
6000 ~2450 -2360
7000 -2772 -2790
8000 3230 -3114
9000 -3656 -3534
10000 -40S0 -3880

Note: Rl] strain readings are in microinches per inch

Table C-9. Principal stresses on titanium end ring bonded to the 12-inch-diameter ceramic
hemisphere Mod 1 DWG 55910-0119913,.

Gage Locations

Pressure A AR AAR
(PSD Hoop Axial Hoop Axial Hoop Axial
(1] 0 0 -0 1) 0 0
1000 -98: 756 =213 2188 -1081 1481

2000 ~4177 1302 -3638 2888 -4749 2049
3000 -8082 1707 -6775 3175 -8876 2625
4000 -12036 2260 -10676 4125 -12168 2793
S000 -16418 2668 -14823 4448 -16248 3798
6000 -19817 4317 ~-17534 6034 -19385 4959
7000 -23844 §093 -21373 6925 -23344 5593
8000 -27607 6157 -24989 7689 -27008 6608
9000 -31864 6733 -29041 8540 -30892 317
10000 -35723 523 -32657 9357 -34695 8120

Note: All stresses are in pounds per square inch, calcu-
lated on the basis of E = 16,500,000 and M=.34
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Table C-10. Stresses on 12-inch-diameter ceramic hemisphere Mod 1 DWG 55910-0119913, Sheet 3.

Pressure KK
(PSID Hoop Axial

(1} (1] 0

1000 2925 1434
2000 -2015 4165
3000 -6369 4812
4000 ~12247 2594
5000 -~16628 2822
6000 -20596 1497
7000 -23952 3088
8000 -20197 4739
9000 -32062 3517
10000 -35453 3379

Note: All stresses are in pounds per square inch
calculated on the basis of E=41, 000,000
and M=.21

Table C-11. Principal stresses on ceramic cylinder gage location.

Pressure L LL
(PSI> Hoop Axial Hoop Axial

0 0 0 1] 0
1000 -8741 $627 -14413 -1469
2000 ~25274 =?111  -24877 -5224
3000 -35263 -12899 -38313 -3850
4000 -48587 -23241 -52344 -15748
S000 -61417 -26888 -55366 -21549
6000 -75913 -43248 -75022 -28465
7000 -90210 -56665 -86001 -33886
8000 -104652 -70768 -102063 -40867
9000 -123683 -106334 -112163 -44054

10000 -140645 -134005 -125736 -52071

Note: Al]l stresses are in pounds per
square inch calculated on the




Table C-12. Principal stresses on titanium end bell gage location.

Pressure
(PSID

BEBRERAREE,

Ly ]
Hoop Rxial

0 0
-10492 -3408
-20014 -18586
-29201 -27650
-38373 -39678
-50616 -4938S
-60680 -59572
-69415 -69637
-80015 -78587
-90627 -89125
-100173  -96080

Note: Rl]l stresses are in pounds per square inch,
calculated on the basis of E = 16,500,000

and M=.34

c-83
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Table C-14. Principal stresses on 12-inch-diameter ceramic hemisphere Mod 2; DWG 55910-0120247, Sheet 1.

Hoop Axial
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Table C-16. Stresses on 12-inch-diameter ceramic hemisphere Mod 3; DWG 55910-0121707.

Rcial  Hoop

Axial

fxial  Hoop

Rxial Hoop

Rxial Hoop

0
.~18911 -24073 -11576
-1839%

-91100
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lllll

1]
-37246

o
-17466 -16788 -13861

-32299
-145697 -1358641

-129979 -141195

-166798 -161126 -176272
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Table C-20. Stresses on 12-inch-diameter ceramic hemisphere Mod 5; DWG 55910-0121837.

Foeial

Rxial Hoop RAxial Hoop Axial Hoop

Hoop

-11813 -13021 -5767

23275
03605

-24152 -25614
~36263

-43307 -48241 -467A
-55426

- B
-12973 -13513
-25826
~-37899
-99854¢ -
-95019 -108634 -100778 -222787 -1

-33440
-51785
-769969
-87637

0
-17161

-25458 -23119

L]
1000 13430 -11689
3

-23629

37803 -35218 -37454
58177 -56156 -5704?7

—48282 -46174 -46997
-87604 -B85479 -B4668
-96656 -94747 -93541
105248 -103904 -102767

RRERSRES

10000
NOTES

C-93

cihg 41 x 10E+06 psi
2

Modulus of Elasti
Poisson’s Ration 0.




APPENDIX D: END CAPS FOR
PROTECTION OF BEARING
SURFACES ON CERAMIC CYLINDERS
AND HEMISPHERES

D-1
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Ali appendix D figures and tables are placed at the end of appendix D text.

FIGURES

D-1.  End cap for 6.038-inch-OD x 5.626-inch-ID ceramic cylinder.

D-2. End cap Mod 0 for 12-inch-OD x 11.174-inch-ID ceramic cylinder.

D-3. End ring Mod 0 for 11.79-inch-OD x 11.37-inch-ID ceramic hemisphere.

D-4. 12-inch-diameter cylindrical ceramic housing section equipped with Mod O end caps.

D-5.  12-inch-diameter hemispherical ceramic housing section equipped with Mod 1 end ring.

D-6. Mod 1 end cap for 12-inch-OD x 11.174-inch-ID ceramic cylinder.

D-7. Mod 1 end cap for 11.79-inch-OD x 11.37-inch-ID ceramic hemisphere.

D-8. 12-inch-diameter cylindrical ceramic housing section equipped with improved Mod 1 end caps.

D-9. Comparison of dimensions on Mod 0 and Mod 1 end caps for 12-inch-diameter ceramic cylinders.

D-10. Configuration of joint between titanium hemisphere and 12-inch-diameter ceramic cylinder
equipped with Mod 1 end cap.

D-11. Configuration of joint between 12-inch-diameter ceramic cylinders equipped with Mod 1 end
caps, and radially supported by a joint ring stiffener.

D-12. Configuration of joint between 12-inch-diameter ceramic cylinder and hemisphere equipped
with Mod 1 end caps.

D-13. Proposed configuration for axial and bearing surfaces in the equatorial region of the
hemisphere.

D-14. Piane steel bulkhead used during pressure testing of individual cylinders to implosion.

TABLES

D-1.  Critical pressures of 12-inch-diameter 84-percent alumina-ceramic cylinders after testing
to proof and design pressures.

D-2.  Results of proof and pressure tests on 12-inch-diameter ceramic hemispheres.

l
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APPENDIX D: END CAPS FOR
PROTECTION OF BEARING
SURFACES ON CERAMIC CYLINDERS
AND HEMISPHERES

INTRODUCTION

Experience has shown that contact between bare
ceramic bearing surfaces on cylinders or hemi-
spheres and metallic joint rings or bulkheads
results in fretting and cracking of ceramic surfaces.
This is caused by differential displacements of
these components due to the difference in moduli
of elasticity and Poisson’s ratios between ceramics
and metals.

A successful solution to this problem is a U-shaped
circular end cap bonded with epoxy adhesive to
ceramic. The thin layer of adhesive acts as a cush-
ion between the mating metallic and ceramic bear-
ing surfaces, eliminating point contacts that
generate high stress concentrations. To ensure an
even thickness of epoxy layer, some form of a
spacer must be inserted between the mating sur-
faces.

ideally, a spacer for controlling the thickness of the
adhesive layer is made of material with the same
physical properties as the polymerized (hardened)
epoxy layer. Such a spacer could be produced by
casting thin layers of epoxy upon Tefion sheets.
The thin layer of hardened epoxy subsequently
would be removed from the Tefion sheet and cut
into pieces small enough to fit into the annular
space between the flanges on the end cap.

The pre-cut pieces of epoxy would be placed at
regular intervais on the bottom of the end cap prior
to filling it with epoxy resin. Upon insertion of the
ceramic cylinder end into the end cap, the epoxy
would overfiow the flanges of the end cap until the
cylinder end came to rest upon the precast epoxy
spacers. Since it was difficult to reliably cast epoxy
layers of 0.01-inch thicknesses for the fabrication
of spacers, manila stock paper of 0.01-inch thick-
ness was selected for this purpose instead.

The spacers were cut into 1-inch-long circular seg-
ments whose outside and inside radii matched
those of the ceramic component. After pre-filling

the end caps with epoxy resin mixture (100 parts
CIBA Geigy 610 resin with 70 parts CIBA Geigy
283 hardener), the spacers were placed on the
bottom of the annular seat 0.25 inch apart. During
insertion of the paper gasket segments, care was
taken so that the segments did not overlap, as this
would not only increase the thickness of the epoxy
layer at this point, but also would result in point
loading to the ceramic bearing surface during pres-
surization of the housing.

During the design of the end caps (appendix A) for
the 6-inch-diameter cylinders, no thought was
given to the effect that flange height might have on
the magnitude of tensile radial stresses on the
ceramic bearing surface resulting from a mismatch
of elasticity moduli and Poisson’s ratios at the
bearing interface.

The height of the flanges was selected, instead, on
the basis of surface area needed on the ceramic
component to prevent extrusion of the epoxy layer
from the annular space between the mating axial
bearing surfaces compressed beyond its yield
point. The height h=1.44t (0.300 inch) selected for
6-inch cylinders was found to be adequate for
68,000-psi axial bearing loading to which the end
cap was subjected at 9,000-psi design pressure
(figure D-1). During extensive pressure cycling
(1,000 cycles) of 6-inch cylinders to design pres-
sure, neither extrusion of adhesive, nor spalling of
ceramic was observed on cylinder ends. Based on
this observation, it was concluded that the height
of the flanges on the end cap and the radial clear-
ance between the flanges and the ceramic shell
were properly sized to prevent extrusion of adhe-
sive through the annuilar spaces between the
ceramic shell and the end cap.

During the design of end caps for 12-inch-diameter
ceramic cylinders and hemispheres, the same
design philosophy was followed. Thus, the height
of the external fiange on the Mod O end cap for a
12-inch cylinder is 0.300 inch, the same height as
of fianges on end caps for 6-inch-diameter cylin-
ders (figure D-2). The ratio between the flange
height and ceramic shell thickness hft;, however, is
radically different for the two cylinder diameters
since the flanges on the Mod 0 end cap are
50-percent shorter than what the ratio calls for
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(h=1.44t; versus h=0.73t.). Similar
flange height was selected for end caps on
12-inch-diameter hemispheres (figure D-3).

The relatively shorter fianges on Mod 0 end caps
had no effect on the extrusion of adhesive, as the
axial bearing loading of the epoxy layer did not
change because of an increase in cylinder size.
The effect on the magnitude of tensile radial stress
on the ceramic bearing surface of the cylinder,
however, was significant, as later studies have
shown. The magnitude of tensile stress on the
ceramic bearing surface increased as a result of
flange height reduction by a factor of approxi-
mately 5, as shown by subsequent investigations
(Reference 1).

FINDINGS

As a result of the inappropriately sized exterior
flange on the Mod 0 end cap for 12-inch-diameter
ceramic housing components, their cyclic fatigue
life was reduced dramatically. Testing of cylinders
and hemispheres equipped with Mod 0 end caps
showed that external spalls began to appear on
12-inch-diameter cylinders (figure D-4) after 30 to
40 pressure cycles and on 12-inch-diameter hemi-
spheres (figure D-5) after 50 to 100 cycles to
9,000-psi design pressure (tables D-1 and D-2).

In addition to the many spalls visible on the exte-
rior surfaces, ultrasonic nondestructive testing
{NDT) detected many internal fracture planes ori-
ented parallel to the exterior surface of the ceramic
component (appendix E). The internal fracture
planes and external spalls reduced the critical
pressure of the ceramic components significantly.
If cycling had continued, the extent of intemal dela-
minations and external spalling would have
increased until the ceramic component weakened
to such an extent that implosion would have
occurred at, or below, design pressure.

None of the housings imploded prior to the ter-
mination of the cycling program. Some of the
ceramic cylinders and hemispheres accumulated
up to 130 pressure cycles without imploding
(appendices B and E). It is not known how many
more pressure cycles the ceramic components
with titanium Mod O end caps would have with-

stood without catastrophic failure, but it is doubtful
that the number of cycies would have exceeded
200.

The short fatigue life of 12-inch-diameter ceramic
components with Mod 0 end caps was disappoint-
ing, but did not have a disastrous effect on the test
program. The ability of cyiinders and hemispheres
to perform reliably in excess of 50 pressure cycles
was sufficient to meet the goals of the Third Gen-
eration Ceramic Housing Program (i.e., evaluation
of joint stiffener and ceramic hemisphere designs).
in addition, the disparity in fatigue lives between
6-inch- and 12-inch-diameter ceramic housing
components pinpointed the dependency of cyclic
fatigue life of ceramic components on the height of
the end cap flanges.

DISCUSSION

Once the effect of flange height on cyclic fatigue
life of ceramic components became apparent,
steps were taken to redesign the end caps and to
evaluate the new Mod 1 end cap design exper-
imentally. The modification to Mod 0 end caps con-
sisted of (1) increasing the height of the flanges,
and (2) incorporating an external seal between the
edge of the external flange and the exterior of the
ceramic component (figures D-6 and D-7).

The fianges on Mod 1 end caps for cyiinders have
been increased from 0.300 inch to 1.30 inches and
for hemispheres from 0.50 inch to 1.30 inches. The
height of the flange-to-shell thickness ratio of the
Mod 1 end cap for cylinders is now h=3.2t. and for
hemispheres, h=6.3t;. These ratios exceed those
of end caps on 6-inch-diameter cylinders by a fac-
tor of 2 (i.e., h=3.2t, for 12-inch-diameter cylinders
versus h=1.44t; for 6-inch-diameter cylinders).

The reason for exceeding the h/t.=1.44 ratio
already experimentally validated on end caps for
6-inch cylinders is that the added height of the
fianges will not only reduce further the tensile
radial stresses on the ceramic bearing surface, but
also prevent leakage until the tip of the spall
extends beyond the elastomeric seal at the edge of
the flange. Thus, even when a crack on the plane
bearing surface grows into a spall, it will require
many pressure cycles before the slow-growing
spall extends beyond the edge of the flange.
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it appears that extending the height of the flanges
on the end cap lengthens the cyclic fatigue life of
the ceramic housing by two ways: (1) the increase
in radial restraint exerted by metallic end caps on
the ceramic shell reduces the tensile radial stress
on the ceramic bearing surface, delaying the initia-
tion and propagation rate of delamination cracks,
and (2) the increase in distance between the bear-
ing surface and the elastomeric seal at the edge of
the flange delays leakage through cracks sur-
rounding spalls, as now the tip of the spall must
extend further than in Mod O end caps to result in
local leakage. To achieve this, the ceramic compo-
nent must be subjected to a greater number of

pressure cycles.

To experimentally validate the beneficial effect of
extending the height of the flanges on Mod 1 end
caps, a single 12-inch-diameter cylinder (cylin-
der #1) was equipped with Mod 1 end caps (fig-
ure D-8), mated with titanium hemispherical
bulkheads, and cycied to 9,000-psi design pres-
sure. The cycling was terminated after 500 cycles
without any visual evidence of external spalling.
Ultrasonic NDT performed by through-transmission
techniques did not detect any internal delamina-
tions extending above the flanges (appendix E).

When cylinder #1 was tested to implosion with
plane steel bulkheads it failed catastrophically at
16,500 psi. This pressure was found to be in the
range of critical pressures calculated for 94-per-
cent aluminum cylinders with the dimensions of
cylinder #1. Thus, it can be concluded that any
delaminations hidden from ultrasonic NDT by

Mod 1 end cap flanges were not significant enough
to initiate premature implosion of the cylinder.

Based on the positive results of the cyclic and
destructive tests to which cylinder #1 was sub-
jected, a decision was made to abandon Mod 0
end caps and replace them with the Mod 1 end
cap design (figure D-9). When the 12-inch-OD x
18-inch-L x 0.412-inch-t cylinders of 94-percent
aluminum are equipped with Mod 1 titanium or alu-
minum end caps (figures D-10 and D-11), their
tatigue lives can be expected to exceed 500 cycles

1o design depth when radially supported at the
ends by ring stiffeners, or metallic hyperhemi-
spherical bulkheads.

A different picture presents itself with Mod 1 end
caps for ceramic hemispheres (figure D-12).
Although the flanges on the Mod 1 end caps for
hemispheres exceed the h/t ratio of end caps for
cylinders (h/t;=5.16 versus hit;=3.2), the projected
cyclic fatigue life of hemispheres is probably
shorter or, at best, the same as that of cylinders
with Mod 1 end caps. The reason for it lies in the
100-percent greater axial compressive loading on
the plane-equatorial bearing surface of the hemi-
sphere.

The disparity in magnitudes of axial compressive
stresses on the adjoining plane bearing surfaces
of a cylinder and hemisphere is due to the fact
that the spherical shell has been designed to be
50-percent thinner than the cylinder, so that the
radial deflections of both shells match. Thus, the
0.59-percent increase in h/t ratio for the sphere
does not compensate for the 100-percent increase
in the axial stress on the equatorial bearing surface
of the sphere, particularly when it has been dem-
onstrated by other investigators that the fatigue life
of ceramic bearing surfaces decreases in a nonlin-
ear fashion with an increase in bearing stress (ref-
erence 1).

Two approaches have been considered to raise
the fatigue life of ceramic hemispheres to equal
that of the cylinders. One of the approaches con-
sidered is to make the shell thickness of the hemi-
sphere equal to that of the cylinder (i.e., 0.412
inch). The other approach is to double the hemi-
sphere’s shell thickness only at the equator. This is
to be accomplished by transitioning the shape of
the spherical shell near the equator into a cylindri-
cal shape (skirt) with twice the thickness of the
spherical shell (figure D-13).

Of the two approaches considered, the second one
appears to be a better solution to the problem. The
good points of the hemisphere with a cylindrical
skirt are:

D-5
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a. The increase in weight over the original

hemisphere design is insignificant, as the
spherical shell retains its original wall
thickness, except for a narrow equatorial
band where its thickness is doubled to
match the thickness of the cylinder.

b. The fabrication cost of the titanium end

cap for a hemisphere with a cylindrical
skirt is significantly less than for a true
hemisphere, since it does not require
machining of the spherical surface on the
interior surface of the inside fiange.

c. The radial restraint exerted by the outside

flange of the end cap on the spherical
ceramic shell around its equator has been
significantly increased by the tight radial
clearance between the flange on the end
cap and the full height of the cylindrical
skirt.

None of these approaches could be evaluated
experimentally by pressure cycling in the program
on Third Generation Ceramic Housings due to lack
of funding. Plans were made, however, to pursue
the evaluation of the skirted hemisphere concept in
the future when fui:ding for this purpose becomes
available.

CONCLUSIONS

1.

Mod 0 end caps for cylinders with fiange
height h=0.73t. (where t. = thickness of cylin-
der shell) do not provide adequate radial sup-
port to the ends of the ceramic cylinder under
external pressure loading, generating
68,000-psi axial bearing stress. As a result,
spalling of the external surface initiates after
about 50 cycles to design pressure.

Mod 1 end caps for cylinders with flange
height h>1.44¢, appear to provide adequate
radial support to the ends of the ceramic cylin-
der under external pressure loading, generat-
ing 68,000-psi axial bearing stress. As a
result, spalling of the external surface does
notinitiate at <500 cycles to design pressure
of 9,000 psi in 94-percent alumina-ceramic
cylinders with /D, = 0.034.

Mod 0 end caps for hemispheres with flange
height h=2.37t; (where t; = thickness of
spherical shell) do not provide adequate radial
support to the ends of the ceramic hemi-
sphere under external pressure loading, gen-
erating 134,000-psi axial bearing stress. As a
result, spalling of the external spherical sur-
face initiates after about 30 cycles to design
pressure. '

Mod 1 end caps for hemispheres with flange
height h=5.16t; appear to be satisfactory.
However, since they were not evaluated
experimentally, it is not known whether the
tatigue life of ceramic hemispheres equipped
with Mod 1 end caps is shorter, or longer,
than that of cylinders with Mod 1 end caps.
Until this end cap design is validated exper-
imentally, it can be assumed that the cyclic
fatigue life of ceramic hemispheres with
Mod 1 end caps is that of cylinders, i.e.,
>500 cycles to design depth.

RECOMMENDATIONS

1.

D-6

Mod 1 end cap with flange heights h>=3.2 t.
are to be used on 12-inch-diameter cylindrical
shell sections of an external ceramic pressure
housing. The additional height of the flange
extends the cyclic fatigue life of the 94-per-
cent alumina cylinder with /D, = 0.034 to
>1,000 cycles.

Epoxy compound made up of 100 parts CIBA
Geigy 610 resin and 70 parts CIBA Geigy 293
hardener is the recommended adhesive for
bonding end caps to ceramic compounds.

Manila stock cardboard gaskets (or a single
gasket) of 0.01-inch thickness are to be used
as spacers between the mating-plane ceramic
and metallic bearing surfaces. The OD and ID
of gasket segments or of a continuous circular
gasket shall match those of the ceramic com-
ponent. If the gasket takes the form of a con-
tinuous ring, 0.25-inch diameter holes should
be punched at 1-inch intervals on its center
line prior to placement inside the end cap.
Gaskets in the form of 1-inch-long ring seg-
ments should be uniformly spaced inside the
end cap at <0.25-inch intervals.
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Ceramic hemispheres should be 50-percent
thinner than cylinders, except around penetra-
tions, and at the equator where their thickness
should equal that of cylinders. The transition
of shell thickness from 0.5t to 1.0t at the
equator should take the form of a cylindrical

skirt whose width is equal to the height of
flanges on Mod 1 end caps for cylinders. The
height of flanges on Mod 1 end caps for hemi-
spheres with cylindrical skirts should be identi-
cal to the height of flanges on Mod 1 end caps
for cylinders.
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Figure D-1. End cap for 6.038-inch-OD x 5.626-inch-1D ceramic cylinder.
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A

[ 787 —

MOD 0

MOD 1

Figure D-9. Comparison of dimensions on Mod 0 and Mod 1 end caps for

12-inch-diameter ceramic cylinders.
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TITANIUM
EQUATORIAL

RING \

/V

TITANIUM

END CAP

MOD 1
CERAMIC
CYLINDER

TITANIUM
HEMISPHERE
O-RING SEAL

CLAMP BAND

ELASTOMERIC
JACKET

Figure D-10. Configuration of joint between titanium hemisphere and
12-inch-diameter ceramic cylinder equipped with Mod 1 end cap.

D-17




FEATURED RESEARCH

END CAP MOD 1

ELASTOMER JACKET /

\\.\\“(\"’s\%’ NSE
VA

ELASTOMER / EPOXY BOND

Figure D-11. Configuration of joint between 12-inch-diameter ceramic cylinders
equipped with Mod 1 end caps, and radially supported by a joint ring stiffener.
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RING
END CAP
MOD 1 AN MOD 1
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CERAMIC
CYLINDER
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7 Nl

CERAMIC ol A
HEMISPHERE

ELASTOMER O-RING SEAL

SEAL ELASTOMERIC

JACKET
CLAMP BAND

Figure D-12. Configuration of joint between 12-inch-diameter ceramic
cylinder and hemisphere equipped with Mod 1 end caps.
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Figure D-13. Proposed configuration for axial and bearing
surfaces in the equatorial region of the hemisphere.
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APPENDIX E: NONDESTRUCTIVE AND
DESTRUCTIVE EVALUATIONS OF
PRESSURE TREATED CYLINDERS
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All appendix E figures and tables are placed at the end of appendix E tex:.

FIGURES

E-1. Photomacrographs of spalling found on cylinder #2: (a) top end of cylinder, 330° to 50° location;
(b) top end of cylinder, 145° to 210° location, sheet 1.

E-1.  Photomacrographs of spalling found on cylinder #2: (c) bottom end of cylinder, 10° to 60°
location; and (d) bottom end of cylinder, 145° to 210° location, sheet 2.

E-2.  Detail of spalling on top of cylinder #2, 10° to 50° location.

E-3. Définition of flaw shape and size by SAM performed on a 3.25-inch-thick ceramic specimen.

E-4. Typical spall fragments from 12-inch-diameter ceramic cylinders. The fragments are
approximately 0.06 inch thick.

E-5. Ultrasonic C-scan of spalled and delaminated areas above the end cap on cylinder #2.

E-6. Ultrasonic C-scan of spalled and delaminated areas above the end cap on cylinder #2, #3, and
#4.

E-7.  Uttrasonic C-scan of cylinder #1. Note the narrow band of indications detected with 10 MHz
through-transmission.

E-8. Images of flaw #1 and #2 indications in cylinder #1 generated by SAM with resolution 0.0015
inch/pixel.

E-9.  Enlarged image of flaw #1 indication in cylinder #1 generated by SAM with resoiution 0.005
inch/pixel. Estimated size of indication is 0.01-0.015 inch.

E-10. Enlarged image of flaw #2 indication in cylinder #1 generated by SAM with resolution 0.005
inch/pixel. Estimated size of indication is 0.015-0.02 inch.

E-11. Image of largest flaw indication in cylinder #3 generated by SAM with resolution of 0.0015
inch/pixel.

E-12. Enlarged image of largest flaw indication in cylinder #3 generated by SAM with resolution of
0.0005 inch/pixel. Estimated size of indication is 0.057-0.065 inch.

E-13. Photomicrographs of piane bearing surfaces on ceramic spails from cylinder #4. Note that the
predominant orientation of cracks is circumferential.

E-14. DR of external spalls visible above metallic end cap on cylinder #2.

E-15. RCT slice through cylinder #2 at one inch evaluation above bottom of cylinder. Note the external
spall.

E-16. RCT slice through a large flaw in cylinder #3. The measured size of indication cross section is
0.045 inch. The SAM indication of this flaw is shown in figures E-11 and E-12.

E-17. Enlarged image of RCT slice shown on figure E-16.

E-18. RCT slice through the smailest flaw in cylinder #3 detected previously by DR.
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E-19. Enilarged image of RCT slice shown on figure E-18.

E-20. The 13-inch-long cylinder #3 after hydrostatic pressurization to 20,000 psi.

E-21. Cylinder #3 after removal of spalled ends shown on figure D-20.

E-22. Indications of flaws detected by film radiography of cylinder #3.

E-23. Indications of flaws detected by SAM of shortened cylinder #3.

E-24. Industrial-grade ultrasonic C-scan of shortened cylinder #3 using 10 MHz pulse-echo inspection
technique, sheet 1.

E-24. Industrial-grade ultrasonic C-scan of shortened cylinder #3 using 10 MHz pulse-echo inspection
technique, sheet 2.

£-25. Subsurface flaws C and D uncovered by grinding away external surface of cylinder #3.

E-26. Flaw G cross section uncovered during incremental removal of material from exterior surtace of
cylinder #3. Note the irregularity of the fiaw shape.

E-27. Flaw FF cross section uncovered during incremental removal of material from exterior surface of
cylinder #3.

E-28. Three-dimensional reconstruction of a typical flaw on the basis of cross section images
uncovered during successive passes of the grinding wheel. Note that the irregularity of the flaw
shape makes it impossible to analyze its crack initiation potential by analytical approaches of
fracture mechanics.

TABLES

E-1.  Critical pressures of 12-inch-diameter ceramic cylinders after testing to proof and design
pressures.

E-2. Summary of SAM data for 12-inch OD x 18-inch L x 0.412-inch t alumina cylinder #1, #2, #3,
and #4.

E-38. Summary of indications generated by film radiography of cylinder #3 shortened to 9.5 inches
after pressure testing to 20,000 psi.

E-4. Summary of indications generated by SAM of cylinder #3 shortened to 9.5 inches after pressure
testing to 20,000 psi.

E-5. Indications detected by both film radiography (table E-3) and SAM (table E-4) in cylinder #3. The
correlation between the two ND inspection technigues is not very high.

E-6. Voids detected during progressive removal of material from external surface of 9.5-inch-long
cylinder #3, sheet 1.

E-6. Voids detected during progressive removal of material from external surface of 9.5-inch-long

cylinder #3, sheet 2.
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APPENDIX E: NONDESTRUCTIVE AND
DESTRUCTIVE EVALUATIONS OF
PRESSURE TREATED CYLINDERS

INTRODUCTION

Overview

At the conclusion of pressure cycling tests per-
formed on 12-inch-diameter by 18-inch-long
94-percent alumina cylinders (appendices B

and C), a nondestructive evaluation (NDE) pro-
gram was initiated to determine the physical condi-
tion of these cylinders. Since all of the cylinders
were identical in size and in ceramic composition,
any difference in extent of structural damage would
be traceable either to the construction of the cou-
pling rings (i.e., aluminum, titanium, Mod 0, or
Mod 1 configuration), or to the number of pressure
cycles to which they were individually subjected
(table E-1).

The NDE program was prompted because as the
pressure cycling progressed, signs of structural
deterioration were observed at the ends of the cyl-
inders and hemispheres which could lead to cata-
strophic failure if cycling was continued

(figures E-1 and E-2). Thus, pressure cycling was
terminated to preciude unexpected catastrophic
failures, and to assess accurately the extent of
damage that already took place.

All of the cylinders and hemispheres were sur-
veyed visually, and ceramic cylinders #1, #2, #3,
and #4 were subjected also to ultrasonic and radio-
graphic NDE. The visual, X-ray film radiography,
and ultrasonic inspections of the cylinders were
performed by Martin Marietta Laboratories, while
the digital radiography and radiographic computed
tomography inspections were performed by Scien-
tific Measurement Systems, inc.

Following these inspections, cylinders #1, #2,
and #4 were fitted out with Mod O end caps and
pressurized to destruction. The objective of these
tests was to determine what effect the internal
fractures and external spalls had on the critical
pressure of the 12-inch outside diameter (OD) x
18-inch length (L) x 0.412-inch-thick 94-percent
alumina-ceramic monocoque cylinders radially

supported by plane steel bulkheads. The test
results showed conclusively that extensive spalling
on the exterior surface, and delaminations inside
the wall originating at the ends of cylinders,
reduced the critical pressure of the cylinders signif-
icantly (approximately 25 to 35 percent).

Cylinder #3 was subjected to an additional set of
evaluation procedures. Two 2.5-inch-wide rings
were cut from both ends of the cylinder to remove
all the shell material weakened by external spalls
and internal delaminations. Following this proce-
dure, the shortened cylinder was equipped with
Mod 0 end caps, mounted between plane bulk-
heads, and subjected to short-term 20,000-psi
external pressure.

The objective of this test was to determine whether
any of the many voids detected by nondestructive
(ND) inspections inside the cylinder would initiate
cracking when subjected to principle stress of
—290,000-psi magnitude in hoop and —145,000 psi
in axial direction. The cylinder did not implode dur-
ing pressurization to 20,000 psi in spite of severe
spalling on the exterior surface at one end of the
cylinder and the appearance of circumferential
fractures originating on the exterior surface near
both ends at the location of maximum tensile flex-
ure stress. During removal of the end closures,
both ends of the cylinder separated at the circum-
ferential fractures. Since it was difficuit to rotate
the cylinder with fractured ends on a table during
ND inspections, rings were cut from both ends fur-
ther shortening the cylinder to 9.5 inches.

After cutting off the fractured ends, cylinder #3 was
reinspected for internal cracks and voids. Inspec-
tion was conducted by five ND techniques.

1. Ultrasonic pulse-echo C-scan (US)
Scanning acoustic microscopy (SAM)

Film radiography (FR)

Digital radiography (DR)

Radiographic computed tomography (RCT)

The inspection of cylinder #3 with these ND tech-
niques was concluded by a destructive inspection
procedure. This procedure began with removing
the material from the external surface of the cylin-
der by grinding. Grinding was continued until the

LA S
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shell thickness was reduced from 0.412 to 0.162
inch. The locations of all voids exposed by removal
of material were recorded, their dimensions mea-
sured, and their shapes photographed. The-e were
two reasons for performing the destructive inspec-
tion: (1) to evaluate and compare the sensitivity
and accuracy of the five ND techniques to which
the cylinder was previously subjected, and (2) to
obtain accurate three-dimensional definitions of the
void shapes.

CONCLUSIONS

Comparison of ND Inspection Techniques

Voids in 0.412-inch-thick ceramic shells can be
detected by several ND techniques. Uftrasonic
technique detects voids >0.01 inch, radiographic
computed tomography detects voids >0.02 inch,
and digital radiography or film radiography detects
voids only >0.03 inch.

The size of the voids can be measured accurately
only by radiographic computed tomography. The
digital radiography and film radiography techniques
produce close approximations of the actual size,
with the images of the voids slightiy (approximately
1 to 3 percent) oversize. Ultrasonic microscopy
presents images that are approximately 5- to
10-percent larger than voids. Standard ultrasonic
C-scans generate images that are 100 to 200-per-
cent larger than voids and, for this reason, are not
suited for measurement of void sizes.

The location of the void in x-y coordinates can be
precisely established by all ND techniques.

The distance of the void from the shell surface
can be measured precisely only by radiographic
computed tomography. Standard uftrasonic puise-
echo A-scans give a close approximation of the
distance, provided that the void is not located
within 0.05 inch of the surface facing the trans-
ducer.

Effect of Voids on Structural Performance

Voids do not act as crack initiators in 94-percent
alumina-ceramic cylinders provided that the follow-
ing conditions are satisfied.

1. Size of the void is <0.05 inch.

2. Distance of the void's center from the external
surface of the cylinder is > the void's diame-
ter.

3. The compressive membrane hoop stress in
the cylinder does not exceed —140,000 psi at
design pressure and —280,000 psi at proof
pressure.

4. Location of the void is outside regions where
tensile stresses are present (i.e., within
0.2 inch of plane bearing surfaces).

RECOMMENDATIONS

All ceramic components must be ND inspected for
external cracks and internal defects in the form of
voids or cracks. Components with external cracks
of any length are not acceptable. Voids with diame-
ters »0.05 inch make the component unaccept-
able.

The following cost-effective ND guality-control
inspection procedure is recommended for ceramic
components.

1. Apply dye penetrant to all surfaces and visu-
ally inspect for cracks.

2. Perform ultrasonic C-scan at 0.01-inch inter-
vals of the shell surface by means of pulse-
echo or transmission techniques using >10
MHz transducers calibrated on a ceramic wit-
ness specimen with 0.03-inch flat bottom
hole. Record location of voids with
>0.015-inch diameter.

3. Place photographic film against the interior
surface of the ceramic shell at locations
where ultrasonic C-scan has located voids
that appear to exceed 0.05 inch in size, and
irradiate the cylinder with an X-ray source.

4, Develop the film and measure the images of
voids. Use these measurements as the basis

E-5
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for acceptance, or rejection, of ceramic com-
ponent.

ULTRASONIC, VISUAL, AND DYE PENETRANT
INSPECTION OF CYLINDER #1, #2, #3, AND #4

introduction

Four 12-inch-diameter by 18-inch-long by 0.4-incn-
thick alumina-ceramic cylinders (#1, #2, #3,

and #4) which had been successfully proof tested
to 10,000-psi external pressure and cyclically
tested (to 9,000 psi) by the Naval Ocean Systems
Center (NOSC)* were received by Martin Marietta
Laboratories (MML) for NDE. This section sum-
marizes the results of the visual and ND ultrasonic
evaluation performed on these cylinders by

Dr. L. Friant at the MML.

Each cylinder was assigned a number (1 to 4) and
marked with a coordinate grid (0° to 360°, 0 inch
to 18 inches). The origin of the grid markings on
the cylinders was completely random, as was the
choice for the top (0-inch mark) and bottom
(18-inch mark). The configuration of the end caps
serving as coupling rings on cylinder #2, #3, and
#4 was the same, but, the materials varied. Cylin-
der #2 had an aluminum end cap on the top and
titanium end cap on the bottom. Cylinder #3 had
aluminum top and bottom end caps. Cylinder #4
had an aluminum end cap on the top and titanium
end cap on the bottom. The end caps on cylin-
der #1 were both aluminum, but were of a different
design (Mod 1) than the other three cylinders
(Mod 0).

Test Procedures

After visually examining and marking each cylinder
{figure E-2), they were inspected by ultrasonic
NDE methods at MML. These methods included
uitrasonic puise-echo C-scans for rapid evaluation
and defect mapping of the ertire cylinder and
scanning acoustic microscopy (SAM) to determine
size and shape of some individual flaws detected
by the C-scans. The Advanced Ultrasonic Test Bed

*NOSC is now the Naval Command, Contro! and
Ocean Surveillance Center (NCCOSC) RDT&E Divi-
sion {NRaD).

(AUTB™) at MML, employing ar: automated scan-
ning procedure, was used to produce the C-scans.
It can accommodate both planar and cylindrical
samples. For cylindrical shapes, such as the
NOSC cylinders, the test article is centered on a
30-inch diameter turntable. The test parameters
were optimized to provide high enough resolution
to detect 0.01-inch voids with a scan.time that was
not excessively long.

The procedure selected to provide this high-resolu-
tion screening is based on through-transmission,
i.e., where a tranducer on one side of the cylinder
transmits a burst of acoustic energy and on the
other side receives it. A waterjet probe was used
to house the unfocused 10 MHz transmit and
receive transducers and provide a quiet and uni-
form 0.187-inch-diameter water column to coupie
the ultrasound to the ceramic cylinders.

The through-transmission approach, when impie-
mented with unfocused transducers, provides sen-
sitivity to defects through the entire wall thickness.
Single-sided pulse-echo metliods suffer from a
near “dead zone” where defects cannot be readily
detected. If focused transducers are used, this can
be improved somewhat by focusing them at the
shell's mid thickness, but sensitivity to deeper
defects suffers considerably.

The main advantage of using a waterjet rather than
conventional full immersion are that more-rapid
scanning speeds can be achieved, and that the
waterjet provides a small aperture which can only
receive transmitted sound from a small region on
the surface, thereby reducing the effective probe
diameter and increasing the lateral resolution. A
test frequency of 10 MHz was the highest fre-
quency that could provide penetration and ade-
quate signa! levels for rapid generation of C-scans.
A scan is created from individual pixels that repre-
sent the amplitude of the signal transmitted
through the cylinder at a particular location. Each
pixel represented an area measuring 0.020 inch by
0.020 inch or 0.010 inch by 0.010 inch, and an
amplitude value anywhere within 256 discrete lev-
els.

This scanning procedure was previously developed
and proven on 1-inch- and 2-inch-thick ceramic
blocks of similar composition (reference 1). In that
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study, simulated cylindrical (1-dimensional) voids
on the order of 100 microns (0.004 inch) in diame-
ter were detected in a 1-inch-thick block of
ceramic. In addition, both horizontally and vertically
oriented cracks were imaged in a 2-inch-thick
block of ceramic. With this technique, defects mea-
suring smaller than the 0.187-inch probe size can
be detected, but will not be sized accurately.

SAM is a high-resolution, defect-imaging technique
based on higher frequencies than used for conven-
tional ultrasonics. This method has been shown to
be able to locate and characterize defects in
ceramic material. An example of a defect imaged
by this method is shown in figure E-3. This defect
was originally found in a large (50-inch-diameter,
3.25-inch-thick) ceramic cylinder by contact pulse-
echo inspection. By sectioning the material, guided
by Acoustic Microscopy, the defect was cross-
sectioned through its center and optical micro-
graphs of it were taken. The correlation between
the size and shape predicted by SAM to the actual
size and shape is excelient.

For the current application, a 30 MHz frequency
was selected to provide the desired resolution. it
was able to penetrate most of the 0.4-inch wall
thickness of the cylinder. The probe used had a
spherical focus, with a focal length of 1.25 inches
from the probe end when measured in water. Since
the speed of sound in alumina is almost six times
greater than that in water, the actual focus dis-
tance in the cylinder is greatly foreshortened. As a
general procedure, a first scan covering a 0.4-inch
by 0.4-inch square was performed at 0.0015-inch
pixel resolution in a suspect area and was followed
up by a 0.0005-inch “zoom” scan (0.2-inch by
0.2-inch square) if a void was detected.

After the SAM analysis was performed, the end
caps serving as coupling rings on cylinders #2, #3,
and #4 were removed by dissolving the epoxy in
the joints by immersing them in Dynasolve 160
stripper for 10 days. The areas on the cylinders
under the rings were then visually examined and
documented. Several pieces of the ceramic that
had broken off were mounted, polished, and
examined by metallographic methods at magnifica-
tions of up to 800X. These broken pieces came

from the ends of the cylinders and contained
cracks which produced the spalling found on the
cylinders (discussed below). Dye penetrant was
then applied to the ends of cylinders #3 and #4 to
detect any cracks extending from the ends of the
cylinders.

Findings

Visual Inspection

Visual examination showed no obvious damage to
cylinder #1. Cylinders #2, #3, and #4 showed
some damage, all of which was found at either, or
both ends, but only on the outside diameter (table
E-1). This damage was termed spalling. Pieces of
the exterior surface near the ends of the cylinders
appeared to have flaked off during testing (fig-

ure E-4). The flaking seemed to progress from the
outside, inward, as some areas had multiple layers
of material that flaked off easily by hand.

Cylinder #2 exhibited the most extensive damage
to its exterior with five areas of spalling (fig-

ure E-1). On the top end of the cylinder, the spal-
ling was located between 330° and 50° of
circumference extending down to about 3 inches
from the end of the cylinder, between 65° and 90°
extending down about 1 inch, and between 145°
and 210° extending down about 1.5 inches. The
spalling on the bottom end of cylinder #2 was
between 10° and 60° extending about 2 inches,
between 125° and 163° extending about

2.5 inches from the end, and between 340° to
30° extending about 2 inches.

Cylinder #3 had spalling damage only on the top
and only in one location (between 330° and 30°
extending about 1.5 inches from the top end). Most
of the ceramic material under the ring on the outer
circumference in the spalled area came off with the
ring, indicating that the cracks producing the spal-
ling originated on the plane bearing surface of the
cylinder end.

Cylinder #4 also had only one spalled area on the
top between 310° and 50° of circumference
extending down about 2.5 inches. Again, most of
the ceramic material under the ring on the outer
circumference came off with the ring, and what
was left could easily be removed by hand.
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Ultrasonic Inspections

After the visual examination, the cylinders were
subjected to ultrasonic evaluation. Based on the
previous success with test blocks, Dr. Friant of
MML felt confident that similar methods could be
directly applied tor full area coverage (except
under, and adjacent to, rings) of the NOSC cylin-
ders. As it tumed out, the method proved to be
sensitive to internal defects, as well as external
surface features such as spalled areas. In addition,
drops of excess adhesive and pencil grid lines
used to define a reference coordinate system
showed up on some of the scans.

Ultrasonic C-scan performed on Cylinder #1 did
not detect any internal cracks or external spalling.
The ultrasonic images for cylinders #2, #3, and #4
are presented in figures E-5 and E-6. From these
scans, it can be seen that cylinders #2 and #4
exhibited not only extensive spalling in several
locations, but also delamination cracks. Table E-2
summarizes the information provided by the ultra-
sonic scans for the internal cracks detected in cyl-
inder #2, #3, and #4. In cylinder #2, a suspect
region between 15° and 55° coincides with a
heavily spalled area. It is uncertain whether there
is definitely an internal delamination in this area in
addition to the surface spalling. In all other situa-
tions, cracks were detected in regions of little or no
spalling, so there is no ambiguity about their pres-
ence.

The C-scans of the cylinders also revealed some
randomly occurring low transmission regions mea-
suring on the order of a few pixels (1 pixel =

0.020 inch by 0.020 inch). These regions appear
as red dots on the scan images. It was postulated
that these areas could be internal processing
defects, such as voids. From a fracture mechanics
standpoint, it wouid be extremely useful to know
the size and distribution of defects in cylinders
which have survived pressure cycling. These low
transmission areas from the uitrasonic scans were
selected for subsequent evaluation using SAM. For
cylinders #2, #3, and #4, however, the majority of
the suspect indications were visually correlated to
external features, usually spots of epoxy adhesive
adhering to the inside, or outside, diameter of the

cylinder. Still, the C-scan of cylinder #1, which had
very clean surfaces, exhibited a single axial band
of voids clearly discernible several inches to the
right of the tape marker (figure E-7). Discrete
areas on the ultrasonic scans which did not corre-
late to some external feature on the cylinders were
selected as candidates for SAM.

Acoustic microscopy was executed on all four cyl-
inders starting at the 80° reference point, however,
due to the fact that the objective was to character-
ize only a representative number of defects, most
of the low-transmission regions were not scanned.
Table E-2 provides a summary of the results; note
that of the 44 total scans performed, 22 defects
were confirmed. In some cases, muitiple defects
were observed in a single scan, whereas in other
cases, no defects were detected. The two low-
transmission regions in cylinder #1, shown as red
dots in figure E-7, appear in the corresponding
magnified SAM image, figure E-8, as two white
patches. Individual “zoom” scans shown in fig-
ures E-9 and E-10 at a resolution of 0.0005 inch/
pixel were subsequently performed to provide the
best detail for sizing of the flaws. These two flaws
were representative of those detected via SAM for
cylinders #1, #3, and #4.

Cylinder #2 contained many suspect regions, but
none of them could be verified using SAM. This
was due in part to misleading indications from the
large number of adhesive drops on the surface.

Cylinder #3 appeared to contain the highest con-
centration of actual defects since 12 were detected
in the region between 90° and 120° in only

11 scans. Cylinder #3 also contained the largest
defect out of the total of 22 detected. Regular and
zoom images of this defect are shown as white
patches in figures E-11 and E-12, respectively.
This defect measured approximately 0.057 inch in
diameter at a depth of 0.13 inch from the outside
diameter. The smallest defect reported was

0.007 inch (cylinder #4), but smaller indications
often surrounded the larger indications. In this par-
ticular configuration, it is estimated that a void as
small as 0.004 inch (8 pixels across) could be reli-
ably discriminated. It is unknown at this time how
the detectability varies as a function of the void's
distance from the shell surface. It is estimated that
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defects lying within 0.05 inch of the outer surfaces
will be very difficult, if not impossible, to detect.

Dye Penetrant Inspection

After ultrasonic scanning and SAM, the end caps
on cylinders #3 and #4 were removed and their
ends were examined by applying dye penetrant.
The dye, which remains in cracks and voids that
extend to th2 surface, revealed numerous internal
cracks throughout the wall of the cylinders, but
mostly on the plane surfaces of each cylinder that
had visible spalled areas. These cracks were pri-
marily circumferential, extending from 1/2 inch to

3 inches in length. They were not confined to the
spalled areas, but were located at all areas around
the circumference. On the ends that did not exhibit
spalling, only a few small intemal cracks were
detected. The internal crack detected by the
C-scans on the bottom of cylinder #4 was detected
by dye penetrant and was located about at the
center of the wall thickness. The dye penetrant
also revealed what appeared to be damage on the
inner diameter (ID) similar to the spalling found on
the OD. No ceramic material was spalied off even
though cracks existed close enough to the 1D wall
that the penetrant could be seen through the thin
layer of ceramic remaining. Several such areas
were found on the top of cylinders #3 and #4.

Pieces of ceramic that had spalled off cylinder #4
were mounted and polished. They were cross sec-
tioned in the circumferential and longitudinal direc-
tions. The photomicrographs in figure E-13 show
the numerous cracks in these small pieces. The
crack propagation mode is primarily trans-granular,
running straight through the grains whether alu-
mina or glass. For the most pan, the cracks were
circumferential, but secondary cracks ~unning per-
pendicuiar (radial) were also found. This appeared
to be the method of the observed spalling.

RADIOGRAPHIC INSPECTIONS OF
CYLINDERS #1, #2, #3, AND #4

Introduction

At the conclusion of ultrasonic NDE by MML, cylin-
ders #1, #2, #3, and #4 were taken to Scientific
Measurements Systems in Austin, Texas for NDE

by digital radiography (DR) and radiographic com-
puted tomography (RCT). Not much was expected
of radiography, as its limitations have been well
established over the years during the NDE of metal
castings (it can not detect an interal delamination
in a body of material if the fracture plane is at a
right angle to the X-ray beam and the space
between fracture surfaces is <3 percent of shell
thickness). In this respect, ultrasonic C-scan using
a through-transmission technique is superior, as it
not only detects surface spalls (due to an increase
in the strength of the transmitted signal), but also
internal delaminations (due to total, or partial,
reflection of the signal at the fracture plane).

its a different story with RCT, in which a computer
reconstructs a tomographic slice of an object. in
RCT, an object is placed between a collimated
X-ray fan beam and detectors sensitive to X-ray
radiation. The detectors measure the intensity of
the X-ray signal as the object is fully rotated within
the X-ray fan beam. A computer then reconstructs
from the data a highly detailed internal view of that
slice through the object. The quality of the resuiting
reconstruction depends on at least three major
factors: how finely the object is sampled; how
accurate the individual measurements are made;
and how precisely each measurement can be
related to an absolute frame of reference.

Mechanical RCT scanners have a spatial resolu-
tion on the order of 1,000 micrometers. State-of-
the-art industrial scanners have resolutions in the
200- to 400-micrometer range. Such resolution is
more than adequate for detection of delaminations
(separations) wider than 0.005 inch, voids larger
than 0.002 inch, and density variation in excess of
0.1 percent. There is, however, a drawback
associated with the fine resolution. In order to
attain this resolution, the tomographic slices
through the object must be very narrow, thus
increasing the number of RCT scans required to
cover the full length of the object. Since the cost of
such a thorough inspection was beyond the scope
of the program, the objective of the RCT inspection
became the measurement of wali thickness at
locations where the greatest delaminations were
observed. The locations where greatest spalling
occurred was at the ends of cylinders, beginning at
the exterior edge of coupling rings and continuing
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for several inches along the length of the cylinder.
Three tomographic scans were taken at these
locations on the - 1 of each cylinder.

Findings

The results of DR confirmed only some of the find-
ings of ultrasonic NDE performed by MML. Radio-
graphs of the ends of cylinder #2 presented
digitized images (figure E-14) of external spalis
identical to those generated by ultrasonic C-scans
(figure E-4). The resolution of these images was
not superior to that of the ultrasonic C-scans. Like
C-scans, there was no positive way of determining
whether the images of external spalls were on the
exterior or interior shell surfaces, without visual
examination of the intemal and external surfaces
of the cylinder. The digital radiographs did not
detect internal delaminations previously found by
ultrasonic C-scan since there was no separation of
fractured surfaces inside the delamination.

The images generated by RCT presented data not
shown by uftrasonic C-scans or DR. The images
generated by RCT depicted accurately the cross
sections of the cylinder wall at a selected location.
These images allowed the observer to determine
whether the defect shown on a high-resolution
RGB monitor was a spall on the internal or external
shell surface. The images of the cylinder cross
section made it also feasible to measure the
decrease in wall thickness at spall locations. Thus,
figure E-15 shows that the wall thickness in cylin-
der #2 at a 0.375-inch elevation above the cylinder
end has been reduced by 30 percent due to exten-
sive spalling on the external surface. In contrast,
the images generated by RCT on cylinder #1 pres-
ent evidence that leads one to conclude that there
is a total absence of spalling in the ends hidden
from visual observation or ultrasonic C-scan by
Mod 1 coupling rings.

The greatest advantage of RCT is the ability of the
system to generate images that represent thin
slices of the component being evaluated. By taking
a series of narrow beam RCT scans and present-
ing the resuits as thin slices of the component
cross section, it is possible to determine where the
delamination, crack, spall, or void originates, how it

progresses along the length of the cylinder, and
where it terminates. For cracks, spalls, and voids
with large dimensions, the RCT scans may be
taken at large intervals, thus keeping down the
cost of NDE.

if one, however, intends to detect the presence of
small voids, the distance between successive RCT
scans must be no larger than the size of the void.
This increases the cost of NDE by RCT to the
point where it may exceed the cost of the item
being inspected, losing its cost-effectiveness.
Thus, the economics of the process may dictate
that NDE by RCT technique will be used only for
detection of shrinkage cracks, and not small voids
in ceramics. If the iocation of voids has been pre-
viously discovered by DR, RCT may be applied to
these locations in order ¢ /1) establish the dis-
tance of the void from the exterior surface of the
shell, and (2) define its shape.

To evaluate the ability of the DR and RCT to detect
voids in ceramic, the 12-inch-OD cylinder #3 was
first radiographed. Following DR, radiographic
tomographs were taken at eight locations where
DR had previously detected voids. All data was
obtained on Scientific Measurements System'’s
101b* tomographic analyzer. Two DRs and eight
RCTs were taken in all. For all scans, the source
was 420 kv X-rays at 3 ma with 0.025-inch brass
filtration. The aperture setting for the detectors was
.25 mm by .25 mm. For the two DRs, the approxi-
mate ray spacing and pixel size was .232 mm and
the integration time was .15 second. The two DRs
were taken 90 degrees to each other and cover the
full height and about 237 mm of the center of the
width at each 90-degree position.

The tomographs were taken with a ray spacing of
.12 mm and reconstructed with a pixel size of
.161 mm. The cylinder was marked with an arrow
that points up and was centered in the first DR
{345R1). The second DR was rotated 90 degrees
in a counterclockwise direction looking at the tomo-
grams, and, in the DRs, the front of the cylinder
moves to the right. All of the RCTs were taken in
the same orientation as the first DR. Some of the
voids detected by DR and located by RCT were
within 0.05 inch of the shell's exterior surface.
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The DR did not encounter any difficuities in detect-
ing voids with diameters >0.015 inch in the 0.412-
inch-thick shell of 12-inch-OD cylinder #3. The
tomographs taken through the centers of the voids
clearly defined the cross sections of the voids and
their location with respect to the shell’s surfaces
(figures E-16 through E-19). By taking a series of
tomographs through any void, one could also
define the void’s three-dimensional shape (i.e.,
spherical, ellipsoidal, cubic, etc.).

DESTRUCTIVE EVALUATION OF CYLINDERS
#1,#2, #3, AND #4

At the conclusion of the NDE program, all 12-inch-
diameter cylinders were tested to implosion. Prior
to testing, however, cylinder #3 was shortened
from 18 to 13.5 inches to remove spalled and
cracked ceramic material located at the ends of
the cyiinder. The removal of the spalied ends was
intended to raise the critical pressure of the cylin-
der above 20,000 psi. The compressive stress at
that pressure was below —300,000 psi, the nominal
compressive strength of alumina. For this reason,
catastrophic failure was not expected unless the
presence of voids was to reduce the compressive
strength of alumina to some lower value.

Since the size of voids in cyiinder #3 ranged from
0.010 to 0.057 inch, a small decrease in critical
pressure of the shortened cylinder would indicate
that voids of up to 0.057-inch diameter can be tol-
erated in alumina-ceramic housings, as the
decrease in material strength does not exceed the
safety margin provided by the design safety factor
of 2. A large reduction of critical pressure below
20,000 psi, on the other hand, would signify that
the presence of a void with 0.057-inch dia:neter
can not be tolerated, and ceramic cylinders or
hemispheres in which NDE detected such voids
should be rejected.

Findings

The 16,500-psi implosion pressure of cylinder #1
was the highest of all 12-inch OD by 18-inch L cyl-
inders tested (table E-1), even though this cyiinder
was previously pressure cycled 500 times to

9,000 psi and a single time to 10,000 psi. This was

to be expected as visual inspection, ultrasonic
C-scan and RCT scan did not detect any external
spalls or internal delaminations in cylinder #1 after
completion of the cycling program. The absence of
spalls and delaminations was thought to be due to
the use of Mod 1 metallic end caps serving as cou-
pling rings that provided better support to the ends
of the cylinder than the Mod 0 end caps with which
all the other cylinders were equipped.

The implosion pressures of the other 12-inch OD
by 18-inch L cylinders (#2, #3, and #4) fell into the
range between 12,100 to 14,700 psi. The magni-
tudes of implosion pressures appeared to reflect
the extent of structural damage which these cylin-
ders exhibited (i.e., the less spalling, the higher the
implosion pressure). Cylinder #4, which failed at
the lowest pressure, exhibited multilayer delamina-
tion at the top end that significantly decreased its
structural performance.

Cylinder #3 did not implode, but the damage was
substantial. A large area at the bottom of the cylin-
der spalled off (figure E-20) and circumferential
fractures appeared on the exterior surface above
each end cap. These fractures were the result of
high flexure stresses caused by the rigid radial
support provided by plane bulkheads.

To make the damaged cylinder #3 amenable to
further ND inspections, it was shortened further to
9.5 inches by cutting away spalled and fractured
material from both ends (figure E-21). The result-
ing cylinder was 3 inches shorter at the top and
5.5 inches shorter at the bottom than the original
18-inch length. But even at this shorter length, the
external surface was still scarred at the bottom by
the large spall that occurred during pressure test-
ing to 20,000 psi. This scar served as a reference
landmark in subsequent ND inspections.

FILM RADIOGRAPHY OF CYLINDER #3 AFTER
HYDROTESTING TO 20,000 psi

The objective of the following X-ray film radiogra-
phy and SAM nondestructive inspections was to
compare the ability of X-ray film photography
against pulse-echo SAM to detect and locate
internal voids and any cracks originating from
them that might have been generated by the
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overpressurization to 20,000 psi. Both inspections
were performed at MML.

Test Procedure

The film radiography inspection was performed by
placing photographic film in contact with the inte-
rior surface of the cylinder and exposing it with
X-rays of 90 kv intensity for 1.2 minutes from a
distance of 60 inches. After exposure, the film neg-
atives were developed and inspected visually on a
light screen for images of voids. The size and loca-
tion of each indication was noted (figure E-23 and
table E-3) for subsequent comparison with indica-
tions generated by SAM.

The SAM was performed by using a pulse-echo
immersion setup. A 30-MHz focused transducer
was used, focusing between the outer and inner
diameters of the cylinder. The acoustic microscopy
scans were performed at a resolution of 0.0012
inch/pixel, covering a total area of 0.5 inch by

0.5 inch. The location and magnitude of each
indication was noted (figure E-23 and table E-4).

Findings

There is a one-to-one correlation between some
indications that appear in both the film radiography
and corresponding SAM images (table E-5). How-
ever, there are some indications apparent in the
X-ray images, which do not appear in the ultra-
sonic images, and vice-versa. This may be due to
the character of the flaw (e.g., void, high-density
void, low-density void, etc.}, the orientatinn of the
flaw, or its distance from the shell surtace. ternal
cracks were not detected by either ir=~2ct-3n tech-
nique.

Neither inspection procedure provided information
on the distance of the indication from the outside
surface of the cylinder. There is no doubt, how-
ever, that SAM is more sensitive than X-ray film
radiography. It routinely detected voids with diame-
ters »0.007 inch, while X-ray film radiography
detected only voids with diameter >~0.02 inch. The
indications generated by SAM are always larger by
about 20 percent than indications generated by
X-ray film radiography for the same voids.

DESTRUCTIVE INSPECTION OF CYLINDER #3
AFTER HYDROTESTING TO 20,000 pai

Following the X-ray film radiography and SAM, the
9.5-inch long cylinder #3 was subjected to a com-
bination of standard, industrial ultrasonic pulse-
echo C- and A-scans. After completion of these
inspections, the external surface of the cylinder
was ground away in 0.002-inch-thickness incre-
ments while the size and location of voids revealed
by grinding was recorded.

The objective of these inspections was to evaluate
the ability of a standard, industrial ultrasonic tech-
nique using pulse-echo C- and A-scans to detect,
locate, and measure voids inside ceramic shells.
The data generated by the destructive inspection
would form an objective standard against which all
the indications generated by all previous nonde-
structive inspection techniques could be evaluated.

The standard industrial ultrasonic pulse-echo
scans were performed by J. B. Engineering of
Weymouth, MA. lts results are similar to other
industrial-grade ultrasonic inspections. The C-scan
{figure E-24) produces indications whose size
exceeds the actual size of voids, while A-scan dis-
plays for each indicate the distance from the shell
surface to the void.

The destructive inspection was performed by
WESGO, Inr. It consisted of applying DYKEM to
the exterior cylinder surface, grinding away
0.002 inch of materal, visually inspecting the
freshly ground surface, and recording the location
of the remaining splotches of colored DYKEM.
Spiotches larger than 0.015 inch were photo-
graphed (figure E-25). This inspection was fol-
lowed by application of fluorescent dye penetrant
to all newly uncovered voids, followed by visual
inspection under black light. Any microcracks
radiating from voids would become visible under
the black light illumination.

A total thickness of 0.250 inch was removed in
0.002-inch increments and inspected in the above
manner at each 0.002-inch increment. Some of
the larger voids were observed during removal of
several layers (figures E-26 and E-27). When the
images of the cross section of the same void
exposed during several grinding intervals are
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positioned above each other, a three-dimensional
image of the void can be formed (figure E-28).

Findings

During grinding away of ceramic from the exterior
surface, 32 voids with diameters <0.015 inch and
17 woids with diameters >0.015 inch were discov-
ered. Their size, location, and distance from the
shell surface were recorded.

The total number of voids exposed by removing
0.250 inch of wall thickness is significantly larger
than the number of indications discovered by any
of the ND inspection techniques in the 0.412-inch-
thick shell prior to grinding. The /argest number of
indications was previously detected by acoustic
microscopy, and the /east number was detected by
film radiography.

Still, the correlation between location of indications
=0.01 inch detected by the industrial-grade ultra-
sonic pulse-echo C-scan and the voids uncovered
by grinding is good.

The distances from shell surface to indications at
mid thickness of the shell were found to be within
10 percent of the actual depth at which the voids
were located. The distances to indications located
within 0.05 inch of the shell surface were, however,
off by 100 or more percent. The sizes of indica-
tions were 100- to 200-percent larger than voids.

The voids uncovered by grinding were mostly
irregular in shape (figures E-25, E-26, and E-27).
The long axis of all voids was found to be parallel,
never perpendicular, to the surface of the cylinder.

inspection with black light of the cylinder surface
coated by fluorescent dye penetrant did not dis-
cover any microcracks originating at the voids.
This indicated that voids up to 0.05 inch in size
did not serve as crack initiators when located in a
triaxial stress field subjected to hoop, axial, and
radial principle stress of —290,000, —145,000,

and 20,000 psi magnitude. This would seem to
indicate that regular and irregular voids with
<0.05-inch diameter can be tolerated in ceramic
shells provided that the compressive stresses gen-
erated during prooftesting in ceramic components
do not exceed above stress limits.

Some of the large voids uncovered during grinding
were found to be located close to the external sur-
face of the cylinder. The distance between the void
envelope and the external cylinder surface in some
cases (voids B, C, and D) did not exceed the
radius of the void. Since the envelopes of the voids
did not exhibit any microcracking even after pres-
surization to 20,000 psi, it can be postulated that
voids can be located close to the pressurized shell
surface provided that the distance between the
void's envelope and the shell’s surface is larger
than the void's radius.

Although most of the voids were widely separated
from each other, a few were encountered during
grinding that were separated by iess than 0.005
inch. Even there, cracking was not observed.

SUMMARY OF ND INSPECTIONS

Findings

The presence of voids with diameters >0.010 inch
can be detected in ceramic shells with thicknesses
of 0.412 inch by using uitrasonic pulse-echo or

through-transmission data acguisition methods. To
achieve such fine resolution, the C-scan of the

ceramic cylinder or hemisphere must be performed
at 0.01-inch increments using >10 MHz frequency.

The Jocation of a void can be accurately pin-
pointed in the x—y plane by ultrasonic through-
transmission or pulse-echo methods operating in
C-scan mode, and its distance from the exterior
surface of the shell estimated by pulse-echo
method operating in A-scan mode.

The size of the void cannot be accurately deter-
mined by sonic inspection methods as the magni-
tude of the signal generated by echo from the void
depends not only on its size, but aiso on its shape.
As a rule, the image of an indication detected by
an ultrasonic C-scan is 100- to 200-percent larger
than the void itself.

The size of a void can be precisely determined by
by radiographic inspection techniques. The most
sensitive method is radiographic computed tomo-
graphy, followed by digital radiography, and film
radiography. The width of the void, or separation of
fracture surfaces at right angles to the ray path,
must be >3 percent of ceramic shell thickness in
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order to be detectable by film radiography inspec-
tion techniques.

The distance of the void with respect to the front
shell surface can be established accurately only by
radiographic computed tomography. Ultrasonic
pulse-echo A-scan provides a good approximation
of the distance if the void is located in the central
region of the wall thickness.

The three-dimensional shape of the void, as well
as its location inside the ceramic shell, can be
accurately determined only by radiographic com-
puted tomography. Because of the high cost, this
technique must be applied only to locations where
ultrasonic inspection has previously pinpointed the
presence of a large void.

The magnitude of voids detected in the 6- and
12-inch diameter housings and hemispheres varied
in size from 0.01 to 0.05 inch. The number of voids
varied from one cylinder to another. The largest
number of voids was found in cylinder #3 at an
apparent density of 3 voids per cubic inch. Over

90 percent of voids detected were <0.015 inch in
size. The sizes of voids in the remaining 10 per-
cent of void population varied from 0.015 to

0.050 inch.

Some voids in the 0.04- to 0.05-inch range were
found within 0.05 inch of the external surface.
They did not implode or serve as crack initiators
when the external surface of the cylinder was sub-
jected to 20,000 psi test pressure.

Voids with diameter <0.05 inch do not initiate
cracks in ceramic cylinders compressed hydrostati-
cally to <300,000 psi compressive stress level.

Conclusions

ND inspection techniques are available for detec-
faces, and voids inside ceramic components with
ground exterior and interior surfaces. ND inspec-
tion techiques are a cost-effective approach for
rejecting ceramic components that might have
failed during proof testing or subsequent service
life.

Recommendations

All structural ceramic components of external pres-
sure housings should be inspected by ND tech-
niques for cracks and internal inclusions in the
form of voids.

The inspection should use three ND procedures.
Application of:

a. Dye penetrant to external surfaces for detec-
tion of surface cracks.

b. Ulrasonic pulse-echo C-scan to the exterior
surface for detection and location of internal
cracks and voids.

c. Film or digital radiography for sizing of inclu-
sions. FR or DR is to be used selectively only
at locations where indications with apparent
size larger than 0.05 inch have been pre-
viously detected by ultrasonic techniques. The
images of flaws generated by FR or DR pro-
cedure shall be considered to represent the
true sizes of flaws.
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(@) Top end of cylinder, 330° 1o 50° location.

(b) Top end of cylinder, 145° to 210° location, sheet 1.

Figure E-1. Photomacrographs of spalling found on cylinder #2, sheet 1.
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(c) Bottom end of cylinder, 10° to 60°location.

{d) Bottom end of cylinder, 145°to 210°location, sheet 2.

Figure E-1. Photomacrographs of spalling found on cylinder #2, sheet 2.
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Figure E-2. Detail of spalling on top of cylinder #2, 10° to 50° location.

Acoustic
Image

Optical
Image

Resolution .002"

® Numerous flaws verified

® 95% of flaws less than 0.040 inch

® Fracture mechanics indicates small flaw propagation is self limiting
® Process adaptable to ful-size testing in factory and field

® |nitial scan can be automated

Figure E-3. Definition of flaw shape and size by SAM performed on a 3.25-inch-thick ceramic specimen.
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Figure £-4. Typical spall fragments from 12-inch-diameter ceramic cylinders. The fragments are approximately
0.06 inch thick.
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Figure E-5. Ultrasonic C-scan of spalled and delaminated areas above the end cap on cylinder #2.

E-21




160 170 180 190 200 210 220
CIRCUMFERENCE, DEGREES

Figure E-6. Ultrasonic C-scan of spalled and delaminated areas above the end cap on
cylinders #2, #3, and #4.
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Figure E-7. Ultrasonic C-scan of cylinder #1. Note the narrow
band of indications detected with 10 MHz through-transmission.

Figure E-8. Images of flaw #1 and #2 indications in cylinder #1
generated by SAM with resolution 0.0015 inch/pixel.

E-23




S

FEATURED RESEARCH

LA

TS L %}:.L.

s
R B
»

9. Enlarged image of flaw #1 indication in cylinder #1

Figure E
generated by SAM with resolution 0.005 inch/pixel. Estimated size of

indication is 0.01-0.015 inch.

Figure E-10. Enlarged image of flaw #2 indication in cylinder #1 generated by

SAM with resolution 0.005 inch/pixel. Estimated size of indication is

0.015-0.02 inch.
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Figure E-11. Image of largest flaw indication in cylinder #3 generated
by SAM with resolution of 0.0015 inch/pixel.

Figure E-12. Enlarged image of largest flaw indication in cylinder #3
generated by SAM with resolution of 0.0005 inch/pixel. Estimated size
of indication is 0.057-0.065 inch.
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Figure E-13. Photomicrographs of plane bearing surfaces on ceramic
spalis from cylinder #4. Note that the predominant orientation of cracks

is circumferential.
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X-Ray
Computed
Tomography

Digital Radiograph
External Spalls

Specimen:
12.00inOD x 11.176 ir
94% Alumina Ceramic
Cylinder #2

Figure E-14. DR of external spalls visible above metallic end cap on cylinder #2.
X-Ray

Computed
- Tomography

2958 120D

¥ Tomograph Through
Cylinder Above End Cap

{ Specimen:

1200in OD x 11.176 in ID
94% Alumina Ceramic
Cylinder #2

Figure E-15. RCT slice through cylinder #2 at one inch evaluation above bottom of cylinder.
Note the external spall.
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X-Ray
Computed
Tomography

0.412 IN "\"%

0.045 N

Tomograph #6
Section E1

Specimen:

12.00iIn OD x 11.176 in ID
94% Alumina Ceramic
Cylinder #3

Figure E-16. RCT slice through a large flaw in cylinder #3. The measured size
of indication cross section is 0.045 inch. The SAM indication of this flaw is
shown in figures E-11 and E-12.

X-Ray
Computed
Tomography

Tomograph #6
Section E1
Inclusion Detail

N -
0.412 1N 7 \{L
\ @

Specimen:

12.00in OD x 11.176 in ID
94% Alumina Ceramic
Cylinder #3

Figure E-17. Enlarged image of RCT slice shown on figure E-16.
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X-Ray
Computed
Tomography

Tomograph #7
Section E4

Specimen:

12.00in OD x 11.176 in ID
94% Alumina Ceramic
Cylinder #3

Figure E-18. RCT slice through the smallest flaw in cylinder #3 detected previously by DR.

X-Ray
Computed
Tomography

Tomograph #7
Section E4
Inclusion Detail

( l‘*TJ: 0.022 IN

Specimen:

12.00in OD x 11,176 in ID
94% Alumina Ceramic
Cylinder #3

Figure E-19. Enlarged image of RCT slice shown on figure E-18.
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Figure E-21.

Cylinder #3 after removal of spalled ends shown on figure D-20.
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Figure E-24. Industrial-grade ultrasonic C-scan of shortened cylinder #3 using 10 MHz
pulse-echo inspection technique, sheet 1. '
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Figure E-24. Industrial-grade ultrasonic C-scan of shortened cylinder #3 using 10 MHz
pulse-echo inspection technique, sheet 2.
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C.
117, 140°, 0.046"

10.5”, 80°, 0.062"

Figure E-25. Subsurface flaws C and D uncovered by grinding away external surface of cylinder #3.
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FF FF.
11.14”, 110°, 0.200" 11.4%,110°, 0.206”

FF.
11.4°, 110°, 0.210”

Figure E-27. Flaw FF cross section uncovered during incremental removal of material
from exterior surface of cylinder #3.
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TYPICAL VOID SHAPE
IN AXIAL
CERAMIC CYLINDER
0.0
0.002
0.008
Q :
0.014
g
0.020
CYLINDER DESCRIPTION
MATERIAL: 94% ALUMINA
0.026 PROCESS: ISOTATIC PRESSING
OD: 12.00 IN
] L: 18.00 IN
RADIAL t:0.412 IN

Figure E-28. Three-dimensional reconstruction of a typical flaw on the basis of cross saction images uncovered
during successive passes of the grinding wheel. Note that the irreguiarity of the flaw shape makes it impossible to

analyze its crack initiation potential by analytical approaches of fracture mechanics.
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Table E-2. Summary of SAM data for 12-inch OD x 18-inch L x 0.412-inch t alumina cylinders #1,

#2, #3, and #4.
CYUINDER | NO. OF | NO. OF FLAWS | -~y | neaTiON DIAMETER or; FLAW
) 100-110°
" 4 2 Sth sq. Down 0.017, 0.0105
1 100-110°
14th Sq. Down 0.0165
” 15 A I . ceee-
100-110°
<] 11 1 11th Sq. Down 0.057 (0.13 in. from 0.D.)
1 80-100°
Tth Sq. Down 0.0105
80-100°
2 a@th & Sih Sq. D 0.0105, 0.0105
2 90-100°
Sih & 6th Sq. D 0.012, 0.009
3 100-110°
31th Sq. Down 0.030, 0.015, 0.0075
1 110-120° 0.0135
2nd Sq. Down
110-120° 0.018, 0.0135
2 12th Sq. Down
90-100°
#4 14 1 6th Sq. Down 0.0145
2 90-100°
9th & 10th Sq. D 0.0125, 0.007
1 90-100°
15th & 16th Sq. Down 0.015
1 70-80°
12th Sq. Down 0.0095
2 200° . !
8th Sq. 0.011, 0.0075
TOTAL 44 2 Largest -
0.057 (0.13 in. from 0.D.)
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Table E-3. Summary of indications generated by film radiography of cylinder #3
shortened 10 9.5 inches after pressure testing to 20,000 psi.

F#la::fs Grid Location Size (in.)
4 10°-30°, 11"-12.5" largest 0.03 x 0.03
3 70°-80°, 9°-10" largest 0.03 x 0.02
1 100°-110°, 11°-12" 0.03 x 0.03
1 135°-145°, 11"-12° 0.03 x 0.03
9 310°-330°, 11"-12.5" largest 0.03 x 0.03

Table E-4. Summary of indications generated by SAM of cylinder #3 shortened to 8.5
inches after pressure testing to 20,000 psi.

l::a‘v,:s Grid Location Diameter (in.)

7 18°-21°, 12"-12.5" 0.048, 0.0165, 0.0135,
0.0195, 0.015, 0.015,
0.0405

2 90°-100°, 3.5"-4.5" 0.0105, 0.0105

2 90°-100°, 4.5".5.5" 0.012, 0.009

1 90°-100°, 6"-7" 0.0105

4 100°-110°, 10"-11" 0.057, 0.030, 0.015,
0.0075

1 110°-120°, 1"-2° 0.0135

2 110°-120°, 11°*-12" 0.018, 0.0135

2 313°-316°, 11"-11.5" 0.0225, 0.015

Table E-5. Indications detected by both film radiography (table E-3) and SAM (tabie
E-4) in cylinder #3. The correiation between the two ND inspection techniques is

not very high.
F':a‘xs Grid Location Diameter (in.)
2 18°-21°, 12"-12.5" 0.048, 0.0405
1 100°-110°, 10"-11° 0.057
1 313°-316°, 11"-11.5" 0.0225
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Table E-6. Voids detected during progressive removal of material from external surface of 8.5-inch-long
cylinder #3, sheet 1.

ELEVATION' AZIMUTH DEPTH?  SIZE
10.1 80° .015 0.018
.019 0.018

I

11.0 145° 0.025

11.0 140° .053 0.030 0.040

10.5 80° .057 0.020 0.050

O M X

12.4 15° .062 0.010 0.024

0o o o o o o

12.5 250° .138 0.020

12.3 17° 0.148 0.018 X 0.040

. @@ m m o 0O wo oy

10.5 103° 0.148 0.020 0.030

>

7.3 85° 0.150 0.008 X 0.014

-

J 11.8 205° 0.157 0.030
BB 11.5 62° 0.160 0.10 Grain

DD 11.1 215° 0.184 0.018 X 0.025
EE 11.9 205° 0.185 0.010 X 0.017
FF 11.4 110° 0.210 0.025 X 0.045
GG 11.5 305° 0.226 0.050

HH 12.0 10° 0.235 0.030

1. Elevation measured from top of cylinder, as per original
grid. Bottom of cylinder was spalled end.

2. Depth measured from original outside surface of cylinder to
center of void.

3. 2all dimensions are in inches.
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Table E-6. Voids detected during progressive removal of material from external surface of 9.5-inch-long
cylinder #3, sheet 2.

Ip Elsvation' Azimuth Depth’ Diamster
L 5.0 240° 0.012 0.002
M 4.0 280° 0.040 0.002
N 11.0 75° 0.044 0.005
o 10.8 215° 0.046 0.005
P 12.0 320° 0.047 0.005
Q 1.8 225° 0.064 0.006
R 3.3 225° 0.064 0.006
s 11.5 160° 0.064 0.006
T 9.5 60° 0.134 0.005
4] 3.8 33s° 0.134 0.002
v 9.7 5° 0.134 0.002
w 11.4 150° 0.136 0.010
X 12.5 265° 0.144 0.006
Y 12.5 275° 0.144 0.006
2 12.5 45° 0.150 0.006
AA 12.0 21° 0.150 0.008
X 6.8 320° 0.158 0.012
II 11.9 315° 0.163 0.010
33 10.2 155° 0.162 0.003
KK 11.9 165° 0.170 0.005
LL 11.6 170°° 0.170 0.003
MM 11.6 171° 0.170 0.007
NN 12.5 210° 0.182 0.005
00 10.8 143° 0.194 0.008
PP 6.8 308° 0.206 0.005
QQ 12.1 277° 0.220 0.010
RR 1.0 157° . 0.223 0.003
Ss 11.9 310° 0.240 0.007
TT 11.6 20° 0.238 0.012
uu 10.9 155° 0.239 0.003
w 12.0 205° 0.250 0.005
w 12.1 205° 0.250 0.001

1. Elevation measured from top of cylinder, as per original
grid. Bottom of cylinder was spalled end.

2. Depth measured from original outside surface of cylinder to
center of void.

3. All dimensions are in inches.
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